Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 3960

Lloyd A. Davidson; Ultrastructure, Behavior, and Algal Flagellate Affinities of the Helioflagellate Ciliophrys marina, and the Classification of the Helioflagellates (Protista, Actinopoda, Heliozoea). J.Protozool. 29(1):19-29, 1982

Reprint

In File

Notes

Ciliophrys marina is a small marine helioflagellate, with a central nucleus, which is capable of reversibly transforming from a rapidly swimming flagellate cell with no axopodia to the structure of a heliozoan with a flagellum that beats only a few times a minute. When in the flagellate form, the flagellum acts as a tractellum due to the tubular mastigonemes found along its length. When the rapidly swimming flagellate strikes a piece of debris, the flagellum goes through a very characteristic shock-induced avoidance reaction. Similarly, when a mechanical shock is delivered to the cell in its heliozoan form, the axopodia are contracted in less than 20 msec. Both reactions are inhibited in low calcium seawater. Transformation from the heliozoan to the flagellate form is accomplished by slow retraction and absorbance of the axopodia and activation of the flagellum. Ultrastructurally, each axopodium is found to contain three microtubules which attach to the outer nuclear membrane of the central nucleus at site that this study characterizes by electron microscopy of thin sections and freeze fracture preparations. The mitochondria have tubular cristae, each containing an intracristal filament. Finally, a taxonomic review of the helioflagellates is presented, and it is suggested that C. marina is derived from the chrysomonads. An argument is also made for classifying C. marina with the heliozoan order Actinophryida, as a recently published classification of the protozoa does.