Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 446

de Terra, N.; Cytoskeletal discontinuities in the cell body cortex initiate basal body assembly and oral development in the ciliate Stentor. J.Embryol.Exp.Morphol. 87:249-257, 1985

Reprint

Not in File

Notes

My previous work has shown that disconnecting the oral apparatus of Stentor into two parts induces mass assembly of basal bodies on the ventral cell surface and thus initiates oral development. This operation severs the extensive microtubule tracts joining the oral membranelles at their bases. To determine whether basal body assembly and oral development are also induced by permanently disconnecting the longitudinal microtubule fibre tracts (mt fibre tracts) of the cell body cortex, I interposed a ring of inverted (heteropolar) cortex between the anterior and posterior halves of interphase stentors. When successful, this operation made it impossible for these fibre tracts to rejoin at the heteropolar boundaries and always induced basal body assembly and oral development in the graft complex. By contrast, tripartite homopolar graft complexes rarely initiated oral development; when they did, it was apparently in response to the presence of disproportionately small oral structures, which is the normal stimulus for oral development in Stentor. The mt fibre tracts of tripartite homopolar grafts also eventually became continuous. These results support the hypothesis that permanent, extensive discontinuities anywhere within the cortical cytoskeleton can trigger basal body assembly and oral development. Since the onset of these processes is known to initiate cell division in Stentor, the results also suggest that development of discontinuities within the cortical cytoskeleton during interphase growth may be the endogenous stimulus initiating cell division in Stentor.