Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 6633

Piet F.M. Verdonschot; Oligochaetes and eutrophication; an experiment over four years in outdoor mesocosms. Hydrobiologia 334:169-183, 1996

Reprint

In File

Notes

Eight experimental ditch mesocosms were used to study the effect of eutrophication over four years. The experimental ditches had a sand or clay bottom. The ditches were treated with additions of phosphorus, phosphorus and nitrogen, or without additions (controls). Oligochaetes were sampled by deploying trays with substratum for colonization over twenty weeks. Both the important variables phosphorus nitrogen and oxygen as well as the oligochaete species and numbers are presented. The effects of nutrient additions on phosphorus, nitrogen and oxygen concentrations were described together with changes in oligochaete species composition and numbers. The results were further analyzed by redundancy analysis (RDA). In the clay-lined ditches nutrient addition coincided with fluctuation in oxygen concentration. The higher the nutrient addition levels the longer the period of oxygen depletion became. During oxygen depletion the number of oligochaetes was strongly reduced or even become zero. The low nutrient status of the sandy bed in the sand-lined ditches slowed down the rate of colonization. Only a few tubificids were collected. Eutrophication effects were only observed at the highest nutrient addition level. Considerable variation is attributed to stochastic factors in the sand-lined ditches. Whether oligochaetes species were present was related to the length of the colonization period. The substratum composition and food together with oxygen regime decided whether they become more or less abundant in ditches. Large-scale mesocosm experiments require time to develop. Only after the first colonization period variables of species presences and abundances can be employed to detect changes associated with eutrophication. Oligochaetes can be used to measure colonization as well as eutrophication processes.