Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 4489

John J. Gilbert and T. Schroder; The ciliate epibiont Epistylis pygmaeum: selection for zooplankton hosts, reproduction and effect on two rotifers. Freshwater Biology 48:878-893, 2003

Reprint

In File

Notes

1. A clonal culture of the peritrich Epistylis pygmaeum was used for all observations and experiments. Motile cells preferentially attached to the eggs of three species of Brachionus but also attached to the body of adult B. angularis. Zooids on the transitory egg substratum developed only short stalks, while those on the body often developed long stalks and branched colonies. Selection of the eggs positions the ciliate near the cloaca, and thus high concentrations of fine particulate material excreted by the host. Settlement on eggs occurred equally well in the light and dark, and on moving and stationary eggs. 2. Motile Epistylis cells attached to a wide variety of rotifer and crustacean zooplankton, but exhibited some pronounced selectively. They readily settled on the eggs of other rotifers (Epiphanes, Polyarthra), on the carapace of several cladocerans (Ceriodaphnia, Daphnia, Diaphanosoma), and on the egg sacs of a copepod (Tropocyclops). They settled less readily on the bodies of the rotifers Asplanchna and Synchaeta, and rarely or never settled on the rotifer Keratella, the cladocerans Bosmina and Scapholeberis, and the body of the copepod. 3. Epistylis populations initiated with a single zooid on Brachionus increased exponentially and often contained several hundred attached zooids and motile cells after 3 days at 20 degrees C. Observations of a culture initiated from a single telotroch provided new information about peritrich life cycles: (1) motile cells reproduced themselves at a rapid rate (ramuda=4.26 day -1); (2) telotrochs produced or transformed into swimming zooids and vice versa. Functions of the two types of motile cells remain to be clarified. Telotrochs likely are specialised for finding and attaching to hosts. Swimming zooids can feed and reproduce, producing both their own cell type and telotrochs. Together, they should enhance dispersal and population growth, especially when hosts are rare. 4. Life-table experiments with two species of Brachionus showed that colonisation by Epistylis had no effect on adult survival but significantly decrease fecundity, by 29% in both cases. Zooids attached to eggs could be a weight burden, increase drag, and possibly inhibit egg development. Those on the body of B. angularis also could interfere with coronal cilia, inhibiting feeding and further slowing locomotion. The ability of E. pygmaeum to select and then interfere with its hosts indicates that this epibiont has the potential to influence the species structure of zooplankton communities.