Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 3987

Sally Lyman Allen, Elizabeth T. Lau, Thomas A. Nerad, and Caroline L. Rushford; Esterase Variants in Four Species of the Paramecium aurelia Complex. J.Protozool. 29(4):604-611, 1982

Reprint

In File

Notes

One hundred eighty-eight stocks of Paramecium primaurelia, P. biaurelia, P. tetraurelia, and P. octaurelia were grown axenically and tested for five esterases, visualized by starch gel electrophoresis, in a search for variant stocks. The five esterases can be distinguished on the bases of their substrate specificity, sensitivity to an inhibitor, and response to different growth conditions. This paper addresses the nature of the electrophoretic change in mobility of the variant stocks in order that species relationships can be more accurately assessed. Crosses carried out in all four species show that single genes determine the differences in mobility between variant and common subtypes. Extracts of variant stocks that gave similar patterns were run against each other, tested for their sensitivity to the inhibitor, and the pattern was compared to that found in extracts of stocks with variant and common subtypes in other species. The majority of the variants in P. primaurelia, P. tetraurelia, and P. octaurelia show an electrophoretic mobility characteristic of a common subtype, or a variant, in another species. The same proportion of variant subtypes as common subtypes have mobilities similar to esterase subtypes found in other species. Of the four species examined in this paper, P. tetraurelia and P. octaurelia appear to be most closely related on the basis of shared esterase subtypes. In P. biaurelia the mobilities of most of the variants are unique, as are the common esterase subtypes in this species P. biaurelia stands out as having the greatest number of esterase subtypes, with very few of them homologous to subtypes found in other species. This observation supports the idea of greater diversification of stocks within P. biaurelia than for the other three species.