Main Content

The World of Protozoa, Rotifera, Nematoda and Oligochaeta

Ref ID : 3964

Robert L. Conner, Josephine R. Landrey, and Nancy Czarkowski; The Effect of Specific Sterols on Cell Size and Fatty Acid Composition of Tetrahymena pyriformis W. J.Protozool. 29(1):105-109, 1982

Reprint

In File

Notes

The size and fatty acid composition of Tetrahymena pyriformis W cells were influenced by the provision of a nutritional supplement of ergosterol, cholesterol, or tetrahymanol, but not of 20-isocholesterol. Ergosterol and cholesterol addition led to a reduction in cellular volume, an increase in glycerophospholipid saturated fatty acid content, and an increase in palmitoleic acid and its metabolic products when compared to unsupplemented controls. Tetrahymanol supplementation resulted in an increase in cellular volume, a decrease in saturated fatty acid content, and a reduction in palmitoleic acid and derivatives. 20-isocholesterol was accumulated by the cells; however, this compound had no effect on any of the parameters followed in this investigation and had only a small depressant effect on tetrahymanol biosynthesis. Ergosterol and cholesterol had the same impact on the ciliates, even though the ergosterol-supplemented cells contained approximately three times as much free sterol as did cholesterol-grown cells. The amount of the free cholesterol and metabolic products in supplemented cultures was similar to the amount of tetrahymanol present in control cultures. This observation suggests that the cells recognize qualitative differences among the various polycyclic alcohols rather than responding to the amount of sterol present. Increased cellular levels of tetrahymanol led to a response unlike that of the true sterols, which again suggests that the high degree of specificity depends on the structure of the added polycyclic alcohol. The changes in fatty acid composition may be required to maintain proper interaction of the polar lipids and the polycyclic alcohols to give an appropriate degree of membrane fluidity.