

CO3 The Orbiting Carbon Observatory (OCO) Mission

Watching The Earth Breathe... Mapping CO2 From Space.

The OCO-3 Mission: An Overview

Annmarie Eldering and the OCO-3 Team May 2013 IWGGMS Meeting Yokohama, Japan

© 2013 California Institute of Technology. U.S. Government sponsorship acknowledged. IWGGMS May 2013

OCO-3 Project Overview

OCO-3 is a NASA-directed Climate Mission on the International Space Station

Primary Science Objective

Collect the space-based measurements needed to quantify variations in the column averaged atmospheric carbon dioxide (CO₂) dry air mole fraction, X_{CO2}, with the precision, resolution, and coverage needed to improve our understanding of surface CO₂ sources and sinks (fluxes) on regional scales (≥1000 km). Measurement precision and accuracy requirements same as OCO-2 Operation on ISS allows latitudinal coverage from 51 deg S to 51 deg N

Salient Features:

Jet Propulsion Laboratory California Institute of Technology

- Category 3 mission per NPR 7120.5E
- Risk classification C per NPR 8705.4
- High-resolution, three-channel grating spectrometer (JPL)
- Partnership between SMD and HEOMD
- Deployed on the International Space Station
- Payload Delivery Date: Sep 2016 at KSC
- Operational life: 3 years after 90 days In orbit Checkout
- Project Scientist: Dr. Annmarie Eldering
- Project Manager: Dr. Ralph Basilio, Deputy: Said Kaki
- JPL Program Manager: Dr. Steven Bard, Deputy: Amit Sen
- ESSP Program Director: Frank Peri, Deputy: Greg Stover Mission Manager: Todd Denkins
- Program Scientist: Dr. Kenneth Jucks, NASA HQ
- Program Executive: Betsy Edwards, NASA HQ

Slide 2

Irbiting Carbon Observatory

OCO-3 Assigned to JEM-EF 6

U.S. Government sponsorship acknowledged.

Comparison of OCO-2 and OCO-3

	0C0-2	OCO-3 on ISS
Land Sampling	Every day (using glint and nadir measurements)	Every day
Glint/Ocean Sampling	16 days on/16 days off	Every day
Latitudinal coverage	+/- 80 degrees	+/- 52 degrees (on ISS)
Local time of day sampling and repeat	~1:30pm with 16 day routine and repeated measurements	Ranges across all sunlit hours with variable revisit (0 to multiple per day)
Expected XCO ₂ single sounding precision	≤ 1%	≤ 1 %
Expected XCO ₂ precision for collection of 100 cloud-free soundings	≤ 0.3% (1 ppm)	≤ 0.3% (1 ppm)
Target mode capability	Yes, with spacecraft pointing	Yes, expanded with pointing mirror assembly
Polarization approach	Keep instrument slit in principal plane	Include optical element to depolarize incoming radiation
© 2013 California Institute of Technology. U.S. Government sponsorship acknowledged. Slide 7 IWGGMS May 2013		

© 2013 California Institute of Technology. U.S. Government sponsorship acknowledged. Slide 9

IWGGMS May 2013

- 2D histogram, with log scale
- There are periods where the northern and southern latitudes have sampling gaps, alternating with very dense sampling
- No simple formula for describing these
- Tropics have consistent, dense sampling, yet clouds will reduce yield

Observato

rbiting Carbo

Spatial Characteristics of OCO-3

- OCO-2 Pointing is controlled by spacecraft
 - Nadir, Glint, and Target observations
- OCO-3* Pointing
 - Same as above plus City Mode
- OCO-3 Pointing Concept
 - 2-Axis pointing mirror system
 - Each axis is made up of two 45° mirrors (M1-M4), 90° out of alignment with each other – any linear polarization created by one mirror is cancelled by the second
 - Two ring motors control the rotation of the mirrors
 - Outer mirror and motor is carried by the inner unit
 - Two axes provide ability to look in any direction within 60° of nadir
 - Scanner can also look into a calibrator box placed on the bottom of the system

Pointing Mirror Assembly (PMA)

M3

Rotation Planes

Slide 13

M2

OCO-3 City Mode Plus Context Camera

- During City Mode scan, the context imager will take pictures every 2 seconds
 - Provides an overlapping set of images that will extend ~15-20 km outside X_{CO2} scan pattern
- Science opportunity
 - Large industrial plumes will be clearly visible in the imagery
 - X_{CO2} field can be compared to plume – especially when visible plume disappears

Slide 17

OCO-3: Global CO₂ Flux Estimates

What are the magnitudes, distribution, and variability of surfaceatmosphere CO₂ fluxes and their uncertainties over the relevant range of spatial and temporal scales? OCO-3 on

- OSSE study show that OCO-3 has the same sounding accuracy as OCO-2 – in most regions flux error reduction is similar, although OCO-3 does not sample Southern Ocean.
- The benefit of the denser sampling of OCO-3 is not reflected in this study
- The combined OCO-2 and OCO-3 measurements would be used to:
 - reduce flux uncertainties by 50% on length scales of 400km for the combined data, as compared to 950km for OCO-2 alone.
 - perform weekly rather than monthly flux inversions of OCO-2 alone.
- Flux error improvement = 1-(final error /initial error).
 Flux error improvement 0.9 means a factor of 10 improvement, 0 is no improvement

© 2013 California Institute of Technology. U.S. Government sponsorship acknowledged.

OCO-3: Terrestrial Carbon Cycle

What are the inter-annual, seasonal, and diurnal changes in uptake and release of CO_2 on sub-regional and regional scales in the terrestrial biosphere?

- The behavior of the terrestrial biosphere is one of the largest sources of uncertainty in quantifying the carbon cycle (LeQuere et al, 2009)
- The X_{CO2} and fluorescence measurements of OCO-3, <u>at all sunlit hours</u>, will provide insight into key terrestrial carbon processes.
- Reducing uncertainties requires sub-regional fluxes, the scale provided by combining OCO-2 and OCO-3.
- As with OCO-2, chlorophyll fluorescence is corretrieved as part of the standard algorithm (to reduce error of X_{CO2})
- Current GOSAT-based dataset is at a single local time, yet there is a strong diurnal signal in fluorescence, valuable for process studies and provided by OCO-3

Year to year changes in land uptake/terrestrial biosphere are large and variable

Slide 20

> How do the regional oceanic sources ar dioxide change with sub-seasonal to int forcing and ENSO?

OCO-3: Oce

- The ENSO cycle is thought to be a key driver of the variability of ocean CO₂ uptake and outgassing
- Spatial patterns of CO₂ exchange are predicted to have fine structures, which are not represented in ship-based climatologies
- The OCO-2 glint (16 days on and off) and the denser OCO-3 glint (every day) measurements would provide flux estimates on the scales required to investigate the patterns of ocean flux suggested by state of the art ocean models
- The combined OCO-2 and OCO-3 missions should span a complete ENSO cycle

© 2013 California Institute of Technology. U.S. Government sponsorship acknowledged.

Jet Propulsion Laboratory California Institute of Technology

OCO-3 Opportunistic Science: Trends in Anthropogenic Emissions

How is the growth in urban population and changing patterns of fossil fuel combustion influencing atmospheric CO_2 distributions? Can we discriminate regional trends of anthropogenic CO_2 emissions against the backdrop of natural variability?

- Reducing uncertainty of the largest terms of the carbon cycle, anthropogenic fossil fuel emissions, is critical to quantifying the complete carbon cycle
- OCO-3 target mode measurements of cities provides the opportunity to characterize plumes from intense point sources of CO₂ such as power stations, and urban centers.
- Urban center growth of 10% per year is detectable by sampling once or twice a month over 2 to 3 years.

