

# Status of the CNES / MicroCarb small satellite for CO<sub>2</sub> measurements

D. Jouglet on behalf of the MicroCarb team (F. Buisson, D. Pradines, V. Pascal, C. Pierangelo, C. Buil, S. Gaugain, C. Deniel, F.M. Bréon, et al.)

## **MICROCARB MISSION OBJECTIVES**

#### MicroCarb will measure the vertically integrated CO<sub>2</sub> concentrations

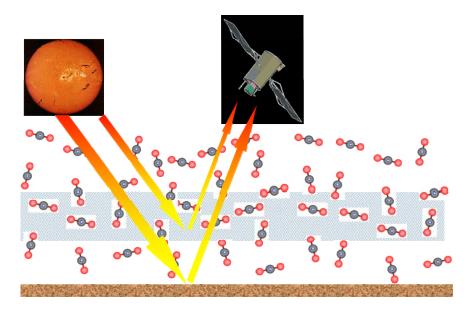
- To quantify CO<sub>2</sub> surface fluxes over the globe at regional scales
- To identify and monitor global carbon sources and sinks
- To better understand the mechanisms in oceans and vegetation

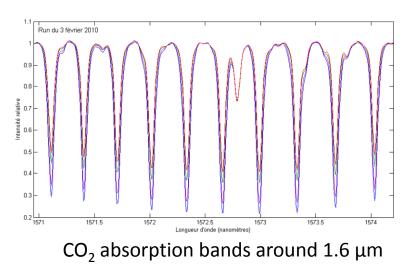
Mission requirements focused on the quality of the CO<sub>2</sub> concentration measurements => **priority given to accuracy** (< 1 ppm) rather than high spatial resolution or sampling

The payload shall consist of a **compact passive instrument** for an accommodation:

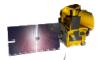
- on a Micro-Satellite (CNES Myriade Evolutions Bus)
- or on a partner platform flight opportunity (autonomous payload)



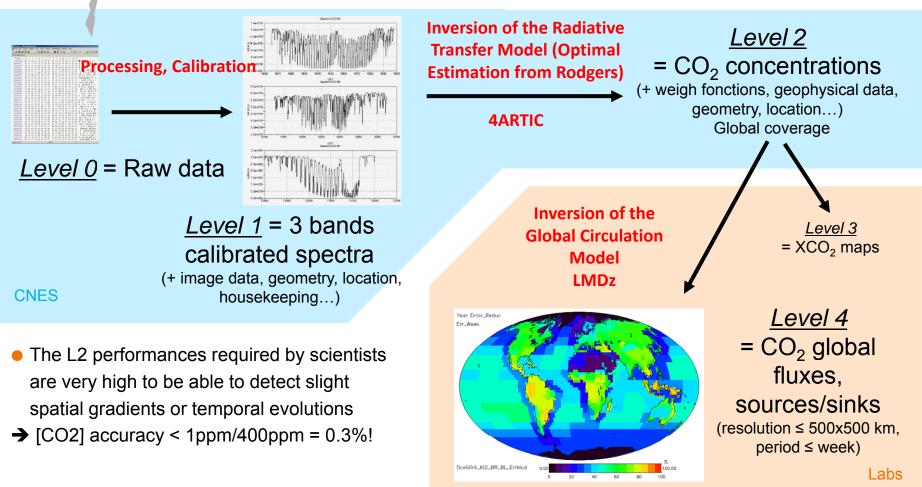

## **MICROCARB PHASE A RANGE**


#### **MicroCarb is currently ending Phase A**

- Objective: to prove the feasibility of the mission
- Lead by CNES from early 2011 to late 2013
- Mission requirements defined by the MicroCarb Science Group
  F-M Bréon (PI) from LSCE, C. Camy Peyret, S. Payan, F. Chevallier etc ...
- 2 competitive industrial analyses (Thales Alenia Space and Astrium)
- Work with technology companies
- Range of phase A:
  - Mission and Satellite/Instrument requirements from CNES / LSCE
  - Instrument concept selection: grating spectrometer (vs static interferometer)
  - Instrument and satellite design
  - Retrieval algorithms development
  - Evaluation of performances at different levels
  - System (Flight Operation and Data Mission Center) preliminary architecture


## THE MICROCARB MEASUREMENT

- CO2 global fluxes cannot be remotly sensed
- MicroCarb senses the solar flux reflected by the Earth in 3 NIR and SWIR bands:
  - B1: 0,76 µm O2 band (surface pressure, optical path length, aerosol distribution)
  - B2: 1,61 µm CO2 band (almost linearly dependent on [CO2])
  - ♦ B3: 2,06 µm CO2 band ( [CO2], sensitive to clouds, aerosols, water vapor...)





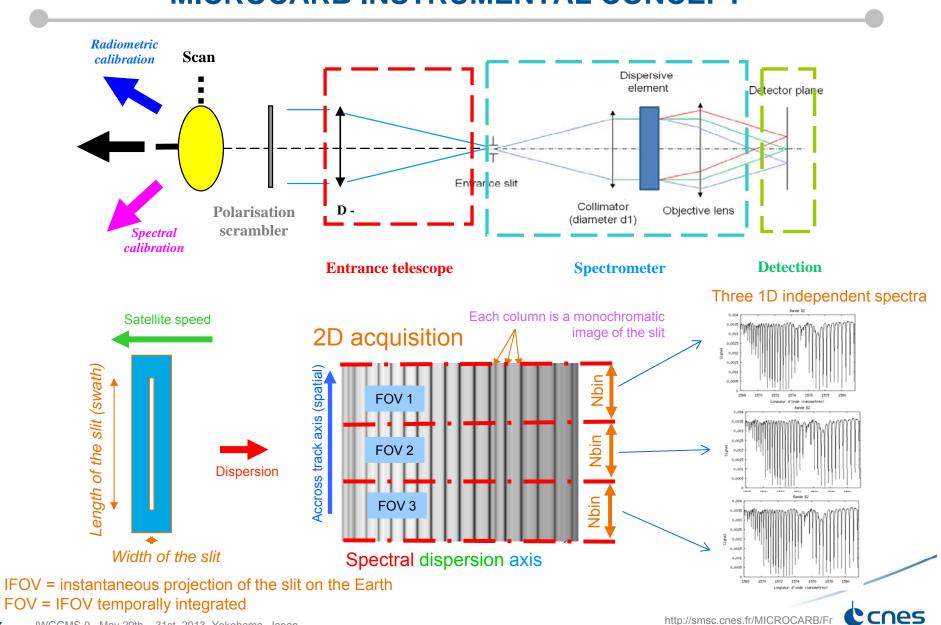

• These spectral signatures give access to the CO2 total column concentration



## **MICROCARB PRODUCTS**



#### → Requires a very high quality spectrometer


- High radiometric and spectral resolution
- High calibration accuracy

Ccnes

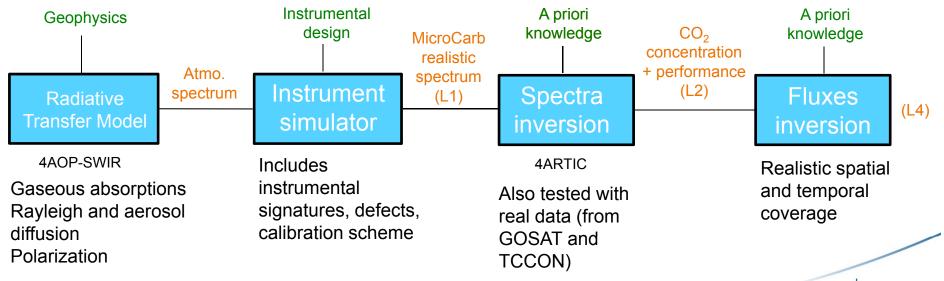
## **MICROCARB MISSION SUMMARY**

| Specification                | 1                       | MICROCARB                                                                           |  |
|------------------------------|-------------------------|-------------------------------------------------------------------------------------|--|
| Orbit                        | 705 km, polar, 13h30    | 705 km, polar, 13h30 sun-synchronous                                                |  |
| Revisit time/ orbits         | 16 days / 233 orbits    | 16 days / 233 orbits                                                                |  |
| Observation Mode             | Nadir, Glint, Target (T | Nadir, Glint, Target (TCCON station, field campaign)                                |  |
| CO2 sensitivity              | Total Column, weightin  | Total Column, weighting functions peaking at surface                                |  |
| CO2 uncertainty              | < 1 ppm, without any    | < 1 ppm, without any regional biases                                                |  |
| Instrument Technology        |                         | Passive instrument, Grating spectrometer<br>3 spectral bands (0,76µm; 1,6µm ; 2µm ) |  |
| Horizontal resolution        | ~ 25 km2                | ~ 25 km2                                                                            |  |
| Nber of pixel across track   | 5 (swath 15 km )        |                                                                                     |  |
| Radiometric resolution (SNR) | 200 to 500              | Industrial trade-off using                                                          |  |
| Spectral resolution          | 25,000 to 42,000        | a performance factor                                                                |  |
| Spectral widths              | 30 to 90 cm-1           |                                                                                     |  |
| Polarisation                 | Linear instrumental po  | Linear instrumental polarization < 0.1% (glint)                                     |  |
| Cloud imager wavelength      | 0.625 µm                | 0.625 μm                                                                            |  |
| Launch date target           | 2018                    | 2018                                                                                |  |
| Nominal lifetime             | 3 years                 | 3 years                                                                             |  |





#### **MICROCARB INSTRUMENTAL CONCEPT**


IWGGMS-9 . May 29th - 31st, 2013. Yokohama, Japan 7

### SOME CNES TOOLS DEVELOPED DURING PHASE A

- An experimental optical breadboard
  - To validate the instrumental concept
  - To get experience about potential instrumental artifacts
  - To test the main technological developments.
    Ex: new grating, polarisation scrambler



#### Numerical tools



Cones

## MAIN RECENT ACHIEVEMENTS

#### Several key preparatory activities have been achieved:

- Improvement of the CNES optical breadboard and instrument simulator
- Improvement and validation of RTM and retrieval tools, ex: inversion incl. aerosols
  - + See oral presentation from Camy-Peyret et al. on Thursday afternoon
- Consolidation of the level 1 requirements
- Consolidation with industry of the instrument design focused on:
  - Calibration (radiometric and spectral)
  - Level 1 correction algorithms
  - Polarization
- Evaluation of the level 1 (incl. pseudo-noises), 2 and 4 performances
- Risk mitigation through technological validation:
  - Polarization scrambler
  - Large European "echelle" grating feasibility
  - Optimization of a cryocooler machine for micro satellite
  - Characterization and improvement of detectors
- Etc.

# **MICROCARB PHASE A MAIN CONCLUSIONS**

A reference design for Satellite and Instrument has been proposed by each competitive company (final delivery in May 2013!)

#### Main conclusion of both studies :

- **No show stopper** identified concerning the feasibility of a Micro-Satellite fulfilling the MicroCarb mission requirements
- 60 < mass < 70kg, 60 < power < 100W, volume OK for Soyuz ASAP external position

#### **Current estimated performances:**

- Level 1 industrial performances:
  - Compliant with L1 requirements
  - Technology Readiness Levels are acceptable
- Level 2 CNES estimated performances: [CO2] accuracy
  - Similar to OCO-2
  - Between 0.2 and 1 ppm in cases without aerosols
  - Regional biases estimation under progress (and its dependence with geophysics)
  - See poster Jouglet et al. for more details
- Level 4 LSCE estimated performances: CO2 surface flux accuracy
  - High level of knowledge improvement
  - Performance ~ OCO-2 (slightly lower due to number and size of FOVs)
  - Biases estimation under progress

## **MICROCARB AUTONOMOUS PAYLOAD**

In parallel to the Micro-Satellite implementation solution, CNES asked industry to explore the feasibility of a **MicroCarb Autonomous Payload** 

- Objective: to enable the accommodation on potential partner platform
- Assumption : reuse most of the building blocks from the current instrument
- Autonomous = with Stand Alone pointing capabilities
  - + Requires **pointing mirror mechanisms** to fulfill the glint and target modes
- Final consolidated conclusions of the study :
  - Demonstration of the feasibility of a Stand Alone compact Payload
  - Payload assessed performances close to Micro-satellite performances
  - Compliant with the MicroCarb mission requirements



## CONCLUSIONS

CNES Microcarb phase A was challenging : to reach (as close as possible) an "OCO2-like" CO2 performance in a constrained budget

#### With a Phase A initiated in 2011, consolidated results available :

- A compact instrument concept fulfilling a CO2 mission ambitious objectives is feasible
- Accommodation on a micro-satellite or on an autonomous payload

#### Phase A will finish at late mid 2013 (PRR)

- Some on-going activities after PRR: L2 inversion improvements, instrument optimization
- On-going coordination with other Greenhouse gazes missions
- Decision for phase B taken in 2014, after a CNES scientific prospective meeting
- Open to discussion to define cooperation with potential partners (provide a carrier satellite for the payload, development of subsystems of the micro-satellite mission, etc.)

#### Schedule allows a launch in 2018:

- MicroCarb shall bring a European contribution to the Carbon flux measurements from space
- MicroCarb could be a precursor for a long-term future operational CO<sub>2</sub> monitoring system
  - → constellation of Micro-Satellites / secondary payloads onboard operational platforms

Thank you for your attention – More information on http://smsc.cnes.fr/microcarb/