12th International Greenhouse Gas Measurement workshop June 7 – 9, 2016

CO₂ Retrieval over Kyoto University, Kyoto, Japan **P.16** East Asia using CAI aerosol information

Woogyung Kim¹, Jhoon Kim¹, Yeonjin Jung¹, Sanghee Lee¹, Hanlim Lee², H.Boesch³, Tae-young Goo⁴

1. Yonsei University, Seoul, Korea 3. University of Leicester, Leicester, UK

2. Pukyong National University, Korea 4. National Institute of Meteorological Sciences, NIMS, Korea

Abstract

Large portion of X_{CO2} retrievals using the GOSAT measurements data are typically screened out during the quality control process, in East Asia, where aerosol concentrations are consistently high throughout the year. Various strategy for handling aerosol information was attempted with the aim of reducing those retrieval errors of X_{CO2} induced by aerosol information. In this study, the X_{CO2} was retrieved from GOSAT TANSO-FTS measurements using aerosol retrievals from TANSO-CAI measurements. CAI aerosol algorithm provides aerosol type and AOD information simultaneously for the same geometry and optical path along the FTS. The developed YCAR algorithm is based on optimal estimation method and VLIDORT V2.6 was used. The retrieval results were evaluated by comparing with ground-based TCCON measurement and operational GOSAT X_{CO2} retrieval (NIES, ACOS, and UoL). YCAR algorithms provided increased number of XCO2 retrieval compared to the operational product by 35 – 90%. The

CO₂ retrieval Algorithm

Table 1. State vectors and A priori information of current algorithm

State vector	Quantity	A Priori	Notes
CO ₂	20 levels	Carbon Tracker - Asia $(1^{\circ} \times 1^{\circ})$	VMR on each level
H ₂ O Scaling Factor	1	ECMWF (0.125° × 0.125°)	Multiplier to a priori H ₂ O profile
Temperature shift	1	ECMWF	Offset to a priori T profile
Aerosol	9 layers	GOSAT-CAI aerosol algorithm	AOD profiles on each level for defined types
Surface Albedo	3 × 2	FTS measurement	Albedo at band center and slope
Wavenumber shift & squeeze	3 × 2	FTS measurement	Spectral shift
Surface Pressure	1	ECMWF	Surface pressure

Current algorithm use 44 parameters as state vector. Zero level offset will be added as state vector soon, and aerosol optical properties will be added in the future.

Algorithm performance test

[Forward model]

Vector LInearized Discrete Ordinate Radiative Transfer (VLIDORT, Verision 2.6) utilized as forward model of this IS algorithm.

Figure 1. Comparisons of retrieved AOD from MODIS and CAI over Ocean in (a) 2009, (b) 2010, (c) 2011, (d) 2012, and (e) 2013. The color represent frequency of compared results.

Retrieval results]

.TCCON

TCCO

TCCON

.TCCO

YSU

370

390

Ver. 201201 GOSAT L1B data from Aug 2010 to Dec 2012 are used for YCAR retrieval. Retrieved result are validated with TCCON GGG2014 data at Tsukuba and Saga site. It is also compared with other GOSAT X_{CO2} retrieval results (NIES L2 v2.21, ACOS L2 v3.4, UoL-FP v5.2).

Conclusion & Further study

This presentations shows a preliminary results of YCAR algorithm. The validation results with TCCON data shows the reliability of YCAR algorithm. Compared to operational algorithms, the available data number of YCAR algorithm was higher than operational algorithms by 35 - 90% with comparable regression analysis results. In further study, the accuracy of YCAR algorithm will be improved and the validation will be conducted over wider area

Acknowledgement

This research was supported by the "Development and Application of Methodology for Climate Change Prediction" program of NIMR

Reference

Rodgers, C. (2000) Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing Co Pte Ltd. Crisp, D et al. OCO (Orbiting Carbon Observatory)-2 Level 2 Full Physics Retrieval Algorithm The-oretical Basis, Tech. Rep. OCO D-65488. Yoshida et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech.

Figure 3. Comparison of retrieved X_{CO2} from four GOSAT algorithms with TCCON X_{CO2} . All single sounding : small fainted dot, daily average : large dot.

YONSEI UNIVERSITY

Atmospheric Radiation Laboratory