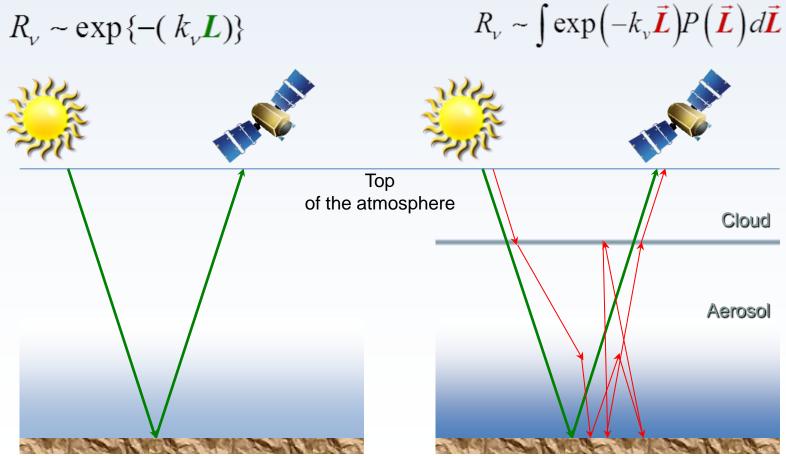

EOF-based regression algorithm for the fast retrievals of XCO₂ from the GOSAT observations

<u>Andrey Bril¹</u>, Shamil Maksyutov², Dmitry Belikov², Sergey Oshchepkov¹

¹Institute of Physics of National Academy of Sciences of Belarus ²National Institute for Environmental Studies, Tsukuba, Japan

project Analysis of PPDF-based XCO₂ and XCH₄ retrievals from GOSAT TANSO-FTS and further development of PPDF-S retrieval algorithm

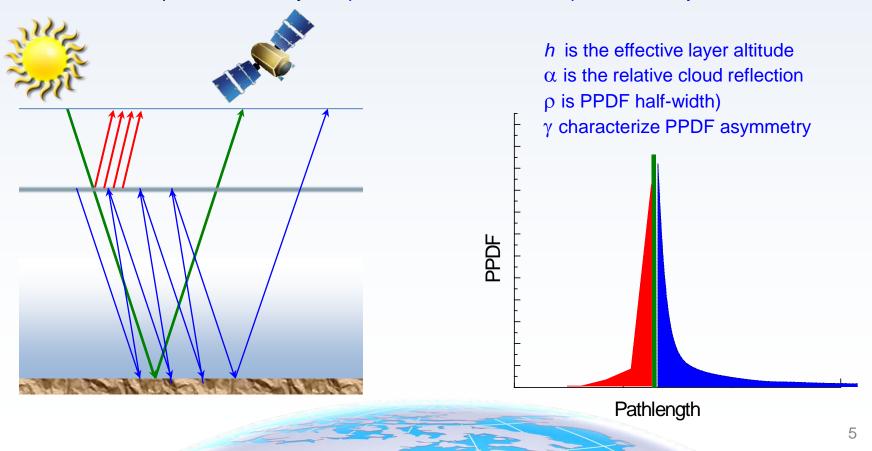
within The 9th Research Announcement (RA)

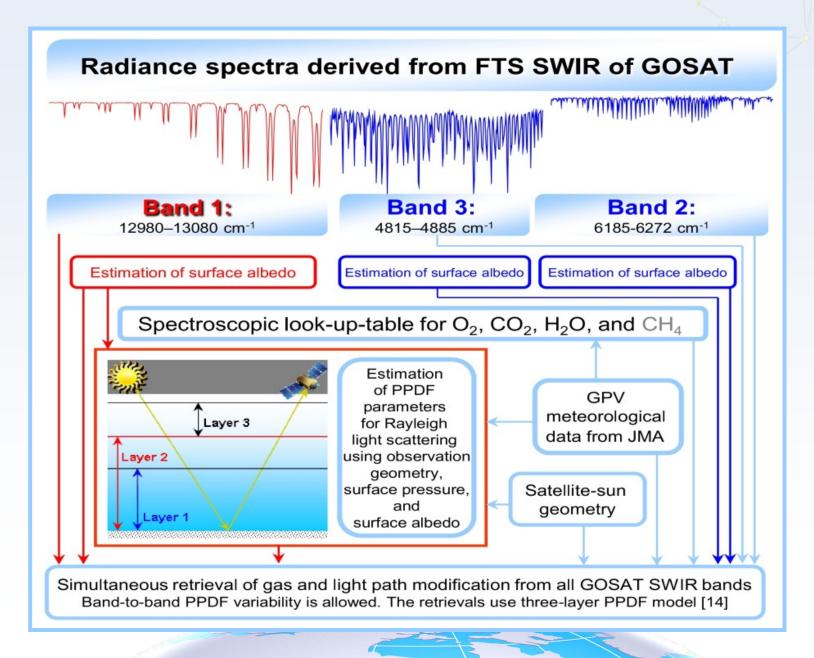

Contents of the talk

- Brief resume of PPDF-algorithm and the ways of its improvement
- Constrains on PPDF from ground-based observations and their extrapolation to global scale using EOF/PCA regressions
- Implementation of XCO₂ regression-based retrieval algorithm
 - constructing of EOF reference basis
 - training
 - XCO₂ retrieving/validation

Basic steps of PPDF approach

Photon Path-length probability Density Function (PPDF)-based approach combinesDifferential Optical Absorption Spectroscopy (DOAS);

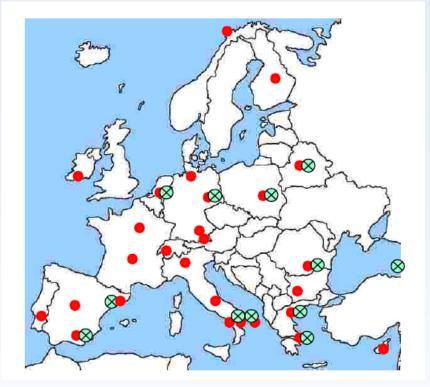

- •Equivalence theorem; and
- •Statistical description of the optical path modification


We were first who have introduced light path terminology in the GOSAT data processing

The parameterization of the PPDF for "cirrus-like" localization of the scattering particles

We have shown that PPDF under different combinations of aerosol and cloud optical characteristics could be parameterized by four parameters for each atmospheric each layer:

Implementation of the of PPDF-approach: PPDF-S



2 ways to improve the algorithm:

- Generalized PPDF parameterization for aerosols
- Using additional *a priori* information on PPDF/XCO₂ and imposing stronger constrains when retrieving these variables

Ground-based observations to constrain PPDF

EARLINET stations (red dots). Green dots indicate the stations where LIRIC program package has been implemented.

from

A. Chaikovsky, O. Dubovik, B. Holben, A. Bril, et al., "Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/ radiometer data", AMT 9, 2016

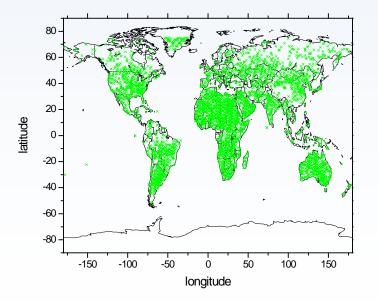
GOSAT signals are synthesized using measured aerosol profiles
PPDF parameters are retrieved from the synthesized data

TCCON stations: PPDF parameters within footprints are estimated under fixed XCO₂ at TCCON values

EOF-based XCO₂ retrieval algorithm

Main steps •EOF-based decomposition of the measured spectral radiance

•Combination of limited number of the decomposition coefficients (principle components) with *a priori* information (e.g. airmass, surface pressure)


•Derivation of regression formulae to relate the combined information with target gas amounts by using training sets of collocated GOSAT and ground-based observations.

EOF-based XCO₂ retrieval algorithm: EOF basis

$$R = E \bullet \Psi \qquad \qquad R_{l,v} = \sum \varepsilon_{l,m} \Psi_{m,v}$$

To perform EOF decomposition we derived reference EOF basis using standard subroutine for Singular Value Decomposition (SVD) from the IMSL library

$U^T R V = \Sigma$

Over-land scalar radiance from NIES operational algorithm for January, April, July, and October of 2010 and 2012 (~ 5000 scans) was used to create EOF basis for three spectral regions

6180 cm ⁻¹ – 6270 cm ⁻¹ ,	Band 2
4815 cm ⁻¹ – 4885 cm ⁻¹ ,	Band 3
$13000 \text{ cm}^{-1} - 13090 \text{ cm}^{-1}$,	Band 1

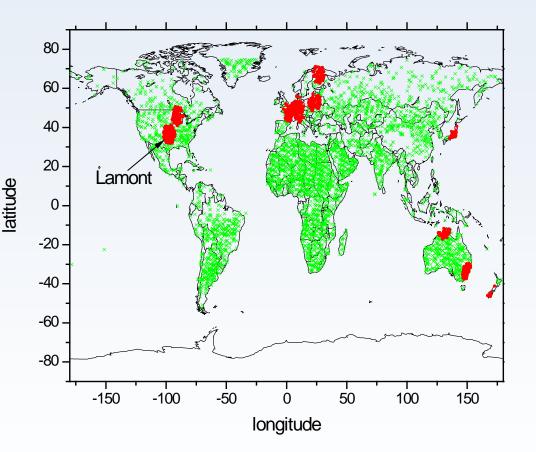
EOF-based XCO₂ retrieval algorithm

Now any spectral signal can be expressed in terms of reference EOF with weighting coefficients defined by τ

$$\mathbf{E}_{(k)} = R_{(k)} \cdot \Psi_{(k)}^{T} = R_{(k)} \cdot V_{(k)}$$

Generalized vector of weighting coefficients includes limited number of PC and *a priori* info – airmass, surface pressure *a priori XCO2*

$$\tilde{\mathbf{E}} = \left\{ E_{(1)}^{1}, \dots, E_{(1)}^{M_{(1)}}, E_{(2)}^{1}, \dots, E_{(2)}^{M_{(2)}}, E_{(3)}^{1}, \dots, E_{(3)}^{M_{(3)}}; \Pi_{1}, \dots, \Pi_{P} \right\}$$


This generalized vector is expected to include necessary information on XCO₂, which is extracted using "transformation vector"

$$X_{CO2} = G \cdot \tilde{\mathbf{E}}$$

G is determined from the condition of the best fit of XCO_2 over the "training subset" of the observations for which values are somehow known

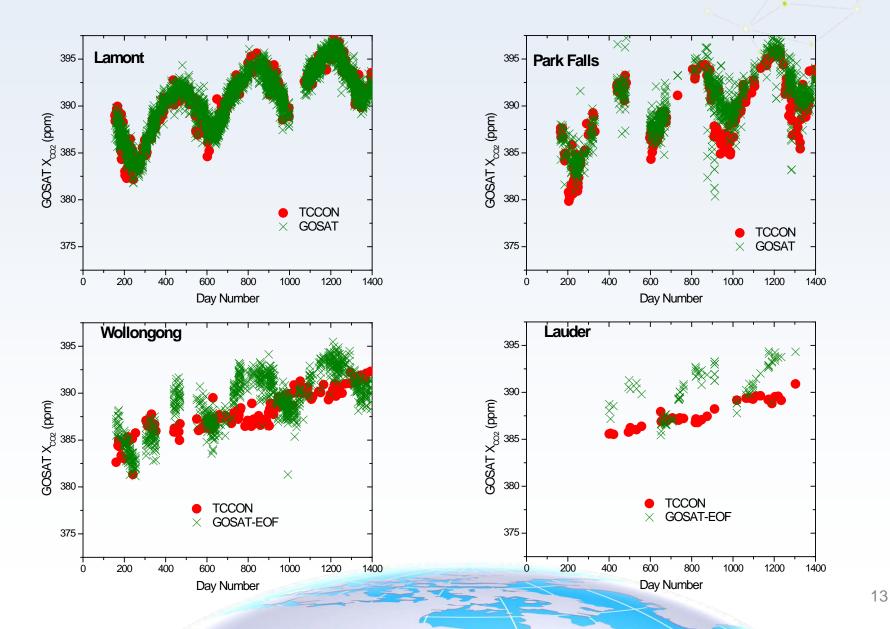
$$G = X_{*,CO2} \cdot \mathbf{E}_{*}^{T} \cdot \left(\mathbf{E}_{*} \cdot \mathbf{E}_{*}^{T}\right)^{-1}$$

Training set selection

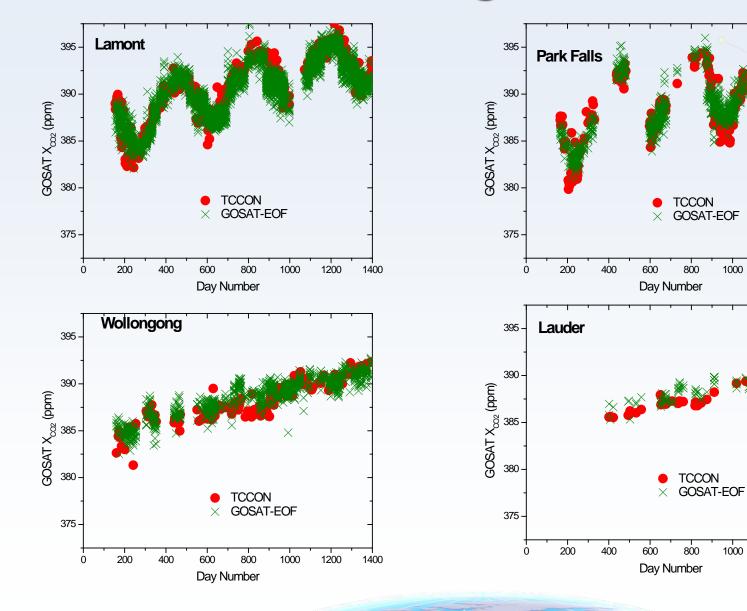
12 TCCON stations: Bialystok, Bremen, Darwin, Garmisch, Karlsruhe, Lamont, Lauder, Orleans, Park Falls, Sodankyla, Tsukuba, and Wollongong

Collocation criteria:

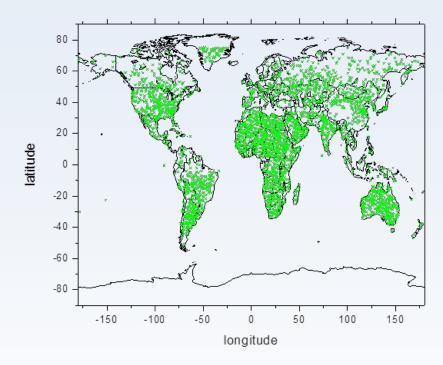
 \pm 1h of the GOSAT overpass time GOSAT observation is located within 5° latitude-longitude circle around the site.

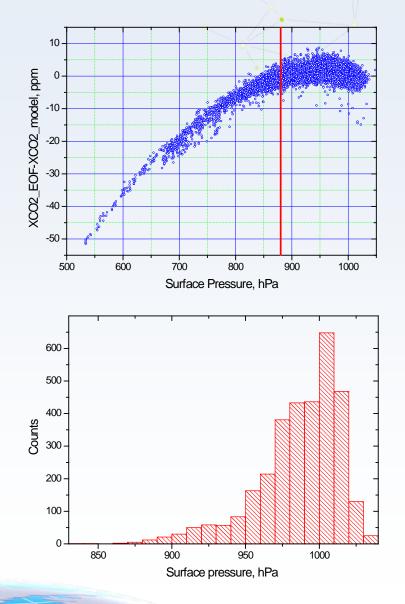

About ~ 12 000 collocated observations

Two sets were tested

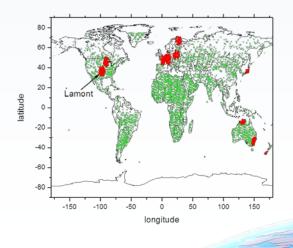

1.Lamont data only2.Balanced data from all 12 sites(20% of Lamont data; 30% of Park Falls, ...)

~ 3000 observations/set (to have the rest for the validation)


Training set 1 (Lamont only)


Training set 2

Additional tests using modeled data



Over-land NIES TM data for January, April, July, and October of 2010 and 2012 (~ 25000 scans)

Additional tests using modeled data

	N	Bias	σ	Slope	r
All observations	22602	0.93	1.48	1.00	0.86
North, latitude >23.5°	8940	0.59	1.45	1.05	0.90
South, latitude < - 23.5°	3436	0.74	0.96	0.87	0.91
Tropics, - 23.5° <latitude <<="" td=""><td>10226</td><td>1.29</td><td>1.56</td><td>0.94</td><td>0.81</td></latitude>	10226	1.29	1.56	0.94	0.81
Realistical characteristics of the EOF-model intercomparison					

Conclusions

- EOF/PCA-based regressions proved to be effective tool to extrapolate local observations to global scale
- Special case : rapid and accurate XCO₂ retrieval algorithm (precision/accuracy appear to be similar to the ones of full-physics algorithms)
- Further improvements of the EOF/PCA- algorithm requires elaborations of the training sets (additional TCCON stations, advanced GOSAT-TCCON collocation criteria)