

IWGGMS-12 Kyoto University, Kyoto, Japan June 7 – 9, 2016

Summary of NIES GOSAT Project: Activities Over the Past Seven Years and Plans for the Next Five Years

T. Yokota (NIES GOSAT Project Acting Leader)

Y. Yoshida, I. Morino, H. Noda, O. Uchino, H. Takagi, M. Saito, S. Maksyutov, M. Ajiro, and T. Matsunaga

Center for Global Environmental Research (CGER)
National Institute for Environmental Studies (NIES), Japan

Contents

- Seven years of the NIES GOSAT project
 - Observation of columnar CO₂ & CH₄ amounts
 - Many versions of GOSAT data products
 - Monthly regional flux estimation of CO₂ and CH₄ by using GOSAT data for three/four years
- Next five-year plan of GOSAT data processing and distribution at NIES GOSAT DHF

Size	Main body		3.7 m x 1.8 m x 2.0 m (Wing Span 13.7m)						
Mass	Total		1750kg						
Power	Total		3.8 KW (EOL)						
Life Time	5 years								
Orbit	sun synchronous orbit								
	Local time Altitude Inclination		13:00+/-0:15						
			666km						
			98deg						
	Repeat		3 days						
Launch	Vehicle		H-IIA						
	Schedule		Jan. 23 2009						

TANSO-FTS

Spectrometer)

earth's surface

ground and the

atmosphere

(Fourier Transform

SWIR reflected on the

-TIR radiated from the

TANSO=Thermal And Near infrared Sensor for carbon Observation

TANSO (炭素) = Carbon

TANSO-CAI

(Cloud and Aerosol Imager)

Ultraviolet (UV) (0.38 micron), visible (0.67 micron), NIR (0.87 micron), and SWIR (1.6 micron)

(Courtesy of JAXA)

Organizations Promoting the GOSAT Project

◆ Mission promoted by JAXA, MOE, and NIES.

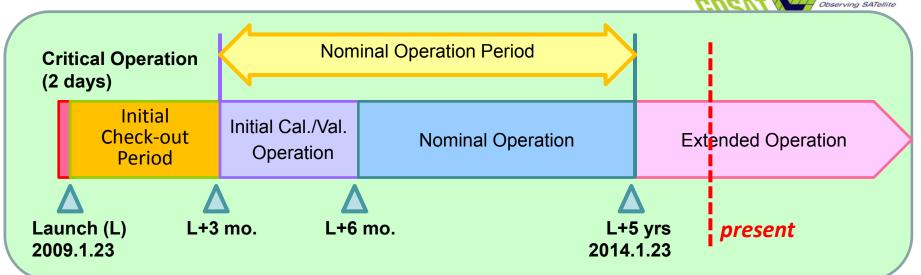
Ministry of the Environment Sensor develop. (partly) Validation funding, Policy making

National Institute for Environmental Studies

JAXA
Japan Aerospace Exploration
Agency

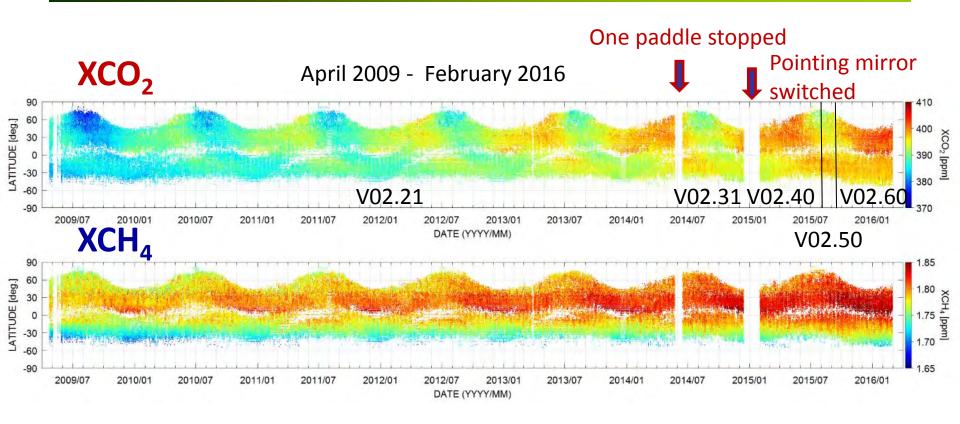
Rocket launch, Satellite and Sensor development & operation, Data acquisition, Calibration, L1 data processing, Data distribution to major organizations (NASA, ESA, ...)

Developing & improving GHG retrieval algorithms, L2 and higher level data processing, Data validation, Estimating carbon fluxes, Data product distribution


Objectives of the GOSAT Project

- 1. To obtain the <u>global distributions</u> of greenhouse gas (GHG) concentrations (CO₂ and CH₄) and their <u>temporal variations</u>
 - To visualize changing GHG global distributions
 - To fill out the gaps in the network of ground monitoring stations
- 2. To improve accuracy of the carbon flux (net sources and sinks) estimation on a sub-continental scale
- 3. To develop technologies for future GHG observing satellites ⇒ GOSAT-2

GOSAT Project History



- ➤ ★01/2015: JAXA switched the GOSAT Pointing mechanism
 of the TANSO-FTS from the main system to the sub-system
 due to occurrence of the unstable pointing.
- ➤ ★08/2015: GOSAT thermal Infrared observation was suspended due to the cryo--cooler anomaly. TANSO-FTS SWIR and TANSO-CAI observations were nominal. The cryo-cooler restarted on Sept. 14, and the TIR measurement has been recovered.

TANSO-FTS SWIR Level 2 (Vers. 02.21, 502.31, 02.40, 02.50, 02.60) XCO₂ & XCH₄

XCO₂, XCH₄: Column-averaged volume mixing ratios are the ratio of the total amount of CO₂ or CH₄ to the total amount of dry air contained in a vertical column from ground surface to the top of the atmosphere.

Settled in 2005

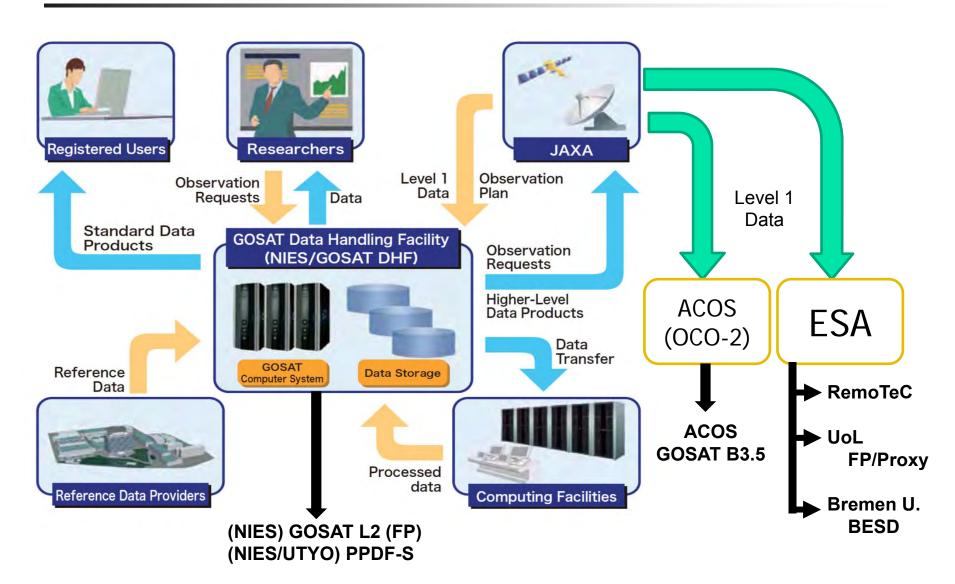
GOSAT Standard Data Products

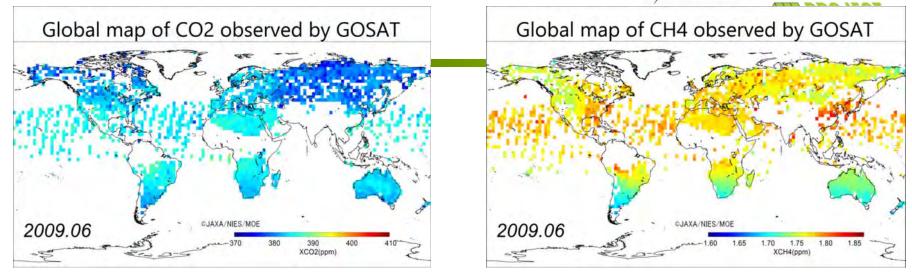
	Product Level	Sensor / Band	Product Designation	Description	Product Provision Unit	Data Format
Level 1 →	L1B	FTS	FTS L1B data	Radiance spectral data obtained by performing Fourier transform on interferogram data	per FTS scene	HDF5
	LIB	CAI	CAI L1B data	Radiance data (band-to-band and geometric corrections applied / data mapping not performed)	n au CAl france	
	L1B+	CAI	CAI L1B+ data	per CAI frame		
Level 2		FTS	L2 CO ₂ column amount (SWIR)			
		SWIR	L2 CH ₄ column amount (SWIR)	can be selected		
	L2	ETO TIP	L2 CO ₂ profile (TIR)			
		FTS TIR	L2 CH ₄ profie (TIR)			
Į		CAI	L2 cloud flag	Cloud coverage data	per CAI frame	
Level 3		FTS	L3 global CO ₂ distribution (SWIR)			
		SWIR	L3 global CH₄ distribution (SWIR)	CH₄ column-averaged mixing ratio data projected on a global map	man was able (relation)	HDF5
		ETO TIP	L3 global CO ₂ distribution (TIR)	per month (global)		
	L3	FTS TIR	L3 global CH ₄ distribution (TIR)	Monthly-averaged CH ₄ concentration at each vertical level projected on a global map		
			L3 global radiance distribution			
		CAI	L3 global reflectance distribution (clear sky)	Clear-sky radiance data (composed only of clear- sky segments selected from a month worth of data)	per 3 days (global)	
			L3 global NDVI	Vegitation index global distribution data (cloudy segments excluded)	per 15 days 30° × 60° (lat. × lon.)	
Level 4 –	L4A	÷	L4A global CO ₂ flux	CO ₂ flux per each of the 64-divided global regions (monthly average)	per year (64 regions)	Text
	L4B	÷	L4B global CO ₂ distribution	per month 2.5° × 2.5° grid (lat. × lon.)	NetCDI	

L4 CH₄ added in March 2014

GOSAT Standard Data Products

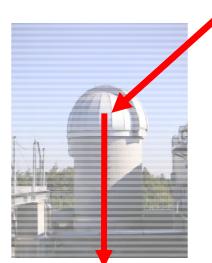
Revised in March 2015


GOSAT Standard Data Products



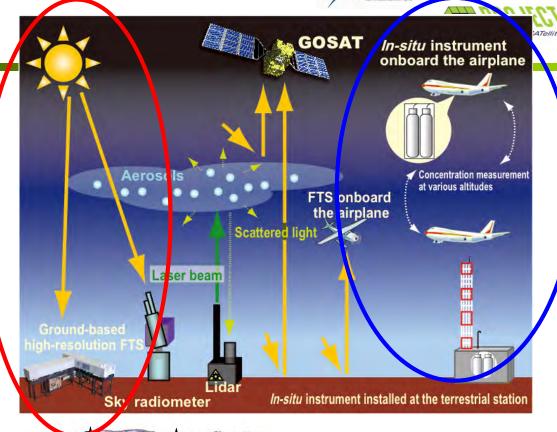
GOSAT Data Processing

55-month-long GOSAT XCO₂ and XCH₄ (June 2009 – December 2013)



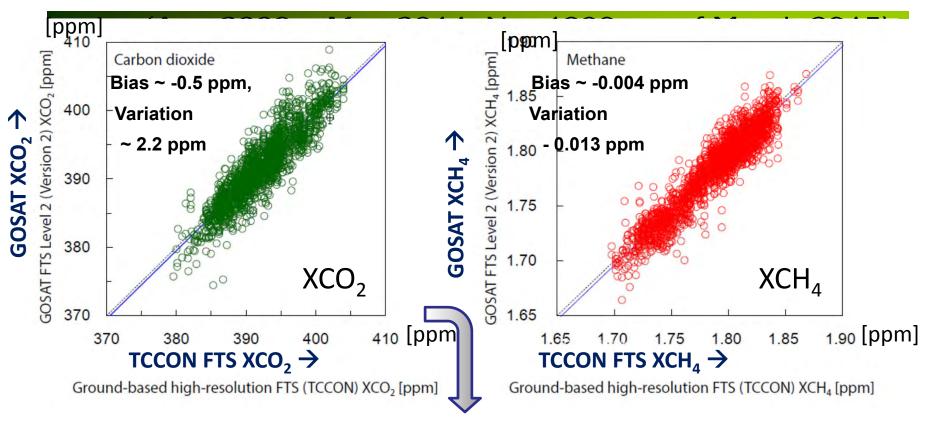
- Above movies are 1-month-moving average GOSAT XCO₂ and XCH₄ with three-day interval. The mesh size is 2.5 degree.
- Various interesting features are shown in these movies such as annual and seasonal variations of XCO₂ and localized anomalies of XCH₄.
- GOSAT obtained XCO₂ and XCH₄ data for more than 6 years. Validation results suggest that relative accuracies (variations) of XCO2 and XCH4 are \approx 2 ppm (\approx 0.5%) and 12 ppb (\approx 0.7%), respectively.

Schematic illustration of the GOSAT validation


Ground-based high-resolution FTS

Morino et al. (2011, AMT) Yoshida et al. (2013, AMT)

Operational Site


Tsukuba, Rikubetsu, Saga

A worldwide network of ground-based FTS (TCCON; over 20 sites in the world) 12

in NIES (Tsukuba)

Validation of GOSAT (TANSO-FTS SWIR) 7 Level 2 Data with TCCON data (Ver.02.21)

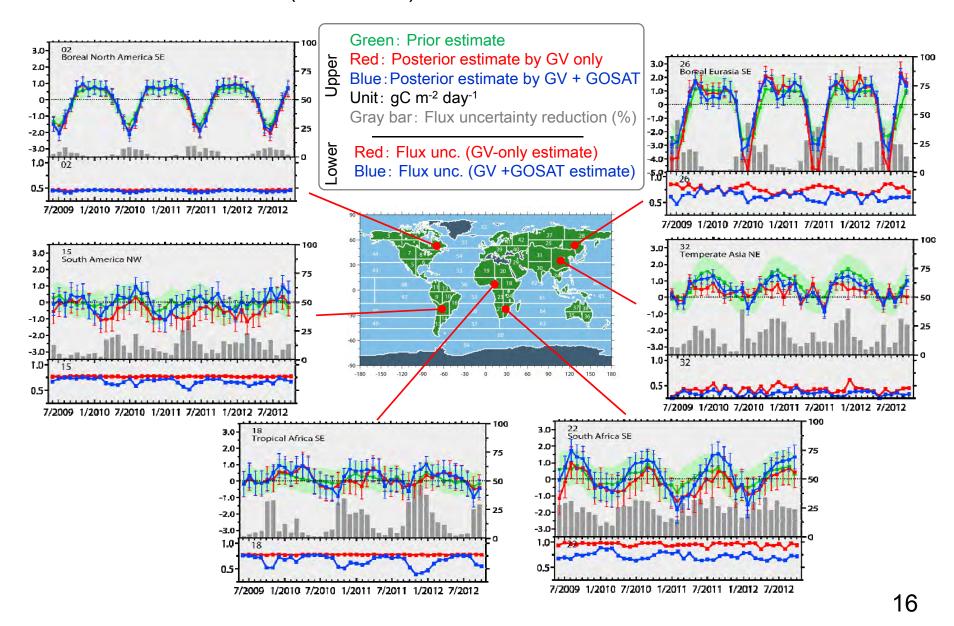


- Slightly lower values (negative biases) of GOSAT
- Standard Deviation is lower than 1 %, respectively

Contribution of satellite data to carbon flux

Monthly CO₂ Flux Estimates and Uncertainties July 2010 July 2011 GOSAT L4A V02.03 CO2 Fluxes (2010/07) GOSAT L4A VO2.03 CO2 Fluxes (2011/07) GOSAT L4A V02.03 CO2 Fluxes (2012/07) EQ 305 305 (C)JAXA/NIES/MOE (C)JAXA/NIES/MOE (C)JAXA/NIES/MOE 306 60IS (C)JAXA/NIES/MOE (C)JAXA/NIES/MOE (C)JAXA/NIES/MOE

Top: monthly-mean CO₂ data (input to flux estimation)

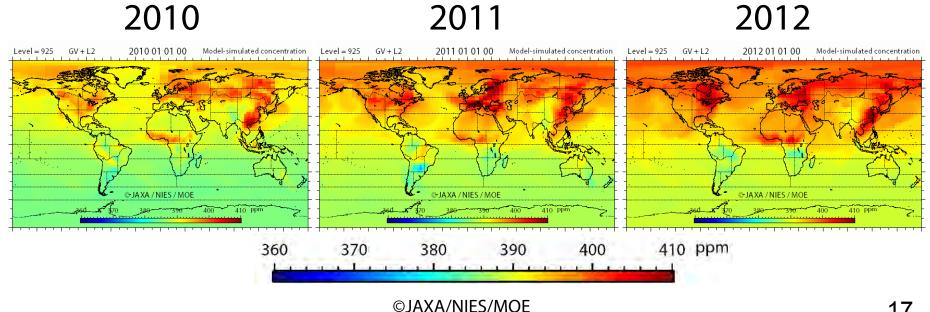

Squares: GOSAT XCO $_2$ gridded to 5° \times 5° cells

Circles: GLOBALVIEW data (212 sites)

Middle: Monthly flux estimate (GOSAT Level 4A CO₂), Bottom: Flux uncertainty

Time series of monthly regional flux estimates

Jun. 2009 – Oct. 2012 (41 months)



GOSAT L4B Data Product (V02.03) Model-simulated CO₂ concentration

 \bullet (6hr-step, 0.925 sigma-level (~800m), 2.5° × 2.5° grid)

MM DD HH 01 01 00

Monthly CH₄ Flux Estimates and Uncertainties January 2010 January 2011 January COSAT L4A V01.02 CH, Fluxes (2019/01) QOSAT_L4A_V01.02_CH, Fluxes (2011/01) GOSAT L4A VOI.02 CH, Fluxes (2012/01) EQ 305 305 (C)JAXA/NIES/MOE (C)JAXA/NIES/MOE 60W (mgCH,/m¹/dloy) 30N EO 300 305

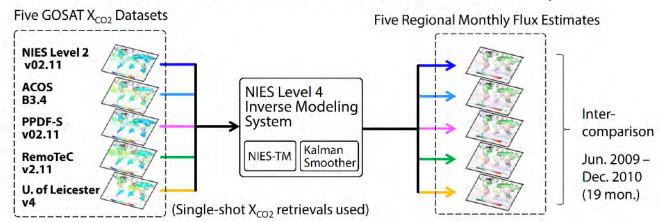
Top: monthly-mean GOSAT XCH₄ data gridded to $2.5^{\circ} \times 2.5^{\circ}$ mesh (input to flux estimation)

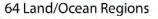
(C)JAXA/NIES/MOE

Middle: Monthly flux estimates (GOSAT Level 4A CH₄)

Bottom: Flux uncertainty

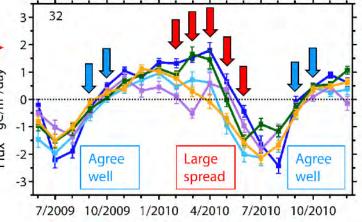
* Anthropogenic, natural, and biomass burning emissions are estimated separately for each region.


(C)JAXA/NIES/MOE


Model Intercomparison with international research groups

Single-system GOSAT inversion inter-comparison

(Transcom/3 subject)



 $(\sim 3000 \text{ km} \times \sim 3000 \text{ km mesh})$

(by H. Takagi & S. Maksyutov (NIES))

19-mon, time series: five fluxes estimated for Reg. 32

These monthly spreads add up to

> 1GtC/yr differences → not negligible!

GOSAT Research Promotion

(International Research Collaboration)

◆Research Announcement

- Research Topics
 - 1) Calibration
 - 2) Data Processing Algorithm
 - 3) Validation
 - 4) Carbon Balance Estimation and Atmospheric Transport Models
 - 5) Data Application
- First announcement was issued in March 2008.
- ➤ 10 announcements were issued and 126 research subjects were adopted by now.
- > 46 subjects have been completed.

National Institute for Environmental Studies (NIES)

Ministry of the Environment (MOE)

GOSAT Research Announcement (RA) Adopted PI's Country List

	1st RA	2nd RA	3rd RA	4th RA	5th RA	6th RA	7th RA		9th RA		
Country	2008	2009	2010	2012	2013	2013	2014	2015	2015	2016	Total
Japan	23	8	1	1	1			1		1	36
USA	7	8	3	1		3					22
Germany	6	2		1	1						10
China	1		2	1	2						6
Canada	3		2								5
France	2	2	1								5
Netherlands	3	1	1								5
UK	2	3									5
Russia	4										4
Finland		2	1		1						4
Australia			2					1			3
India		1	1								2
Indonesia			1				1				2
Italy		2									2
Korea		1	1								2
Malaysia				1						1	2
Norway		1								1	2
Spain		1	1								2
Belgium		1									1
Beralus									1		1
Brazil		1									1
Czech		1									1
NewZealand	1										1
Singapore		1									1
Taiwan, ROC			1								1
Total	52	36	18	5	5	3	1	2	1	3	126

(PI: Principal Investigator)

GOSAT Research Announcement (RA) Adopted Subject Topics

	1st RA	2nd RA	3rd RA	4th RA	5th RA	6th RA	7th RA	8th RA	9th RA	10th RA	
Research Category	2008	2009	2010	2012	2013	2013	2014	2015	2015	2016	Total
Calibration	4										4
Data Processing Algorithm	11	7	2	1					1		22
Data Validation	15	7	1	2	2	1		1		1	30
Source and Sink Estimation	6	8	3								17
Data Application	16	14	9	2	3	2	1	1		2	50
Data Application/Data Validation			2								2
Data Application/Source and Sink Estimation			1								1
Total	52	36	18	5	5	3	1	2	1	3	126

Rights and duty of the RA PIs

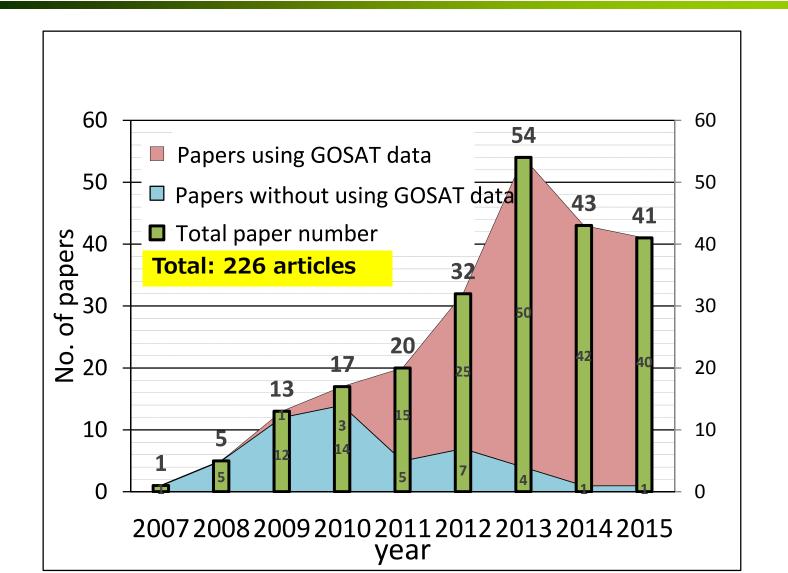
◆ Rights

- 1.To submit the GOSAT observation requests.
- 2.To request the delivery of standard and research products without any cost prior to their release to the general users.
- 3.To request to process FTS SWIR L2 data products without any screening criteria of the data quality.
- 4.To obtain additional information of the FTS SWIR L2 data products (column abundances of CO₂, CH₄, and H₂O (SWIR)), so-called the "subdatasets" of the FTS L2 data products.
- 5.To participate in the GOSAT RA PI Meeting (closed meeting)

Duty

- 1.To write a progress report and an interim report once in a year.
- 2. The final report and a summary report should be written after completion.
- 3. These reports will be evaluated by the GOSAT RA Selection and Evaluation Committee.

GOSAT RA PI Meetings



GOSAT-related Published Papers

(as of December 2015)

Plans for the Next Five Years

- ◆ At the first stage of the GOSAT project, we have designed the data handling facility (DHF) to process, reprocess, store, distribute, and improve processing codes for 5-year nominal mission period.
- ◆ But GOSAT is still operating, and now in 8th year operation. Therefore, we have prepared equipment to process for five years more, and will update the DHF system under the condition of keeping operation.
- ◆ From this year, we will re-process the CAI data, minimum-surface reflectance, cloud flag, and then FTS SWIR L2 X_{CO2} and X_{CH4} by using an assimilation – SPRINTARS (aerosol transport model) for the data during April 2009 – May 2014.