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Abstract The CO, Sounder Instrument Receiver Wavelength Response Calibration

The CO, Sounder lidar multi-wavelength measurement

) ) « Built by NASA Goddard. Prototype of the space-borne concept
needs a complex retrieval algorithm to best use all the . Flown as part of the ASCENDS field Lidar instruments require an optical bandpass 100 . . .

information present in the lineshape. In this poster, campaigns of 2009-2014. NASA DC-8 filter to prevent sunlight from flooding the detector. 80

we describe: _ — _
« Uses a pulsed, multi-wavelength — 60/
Integrated Path Diff. Abs. approach. ol

(1) Retrieval algorithm of the CO2 Sounder measure-
ments and airborne instrument calibration

(2) Analysis of the retrieval approach and the implica-
tions on space scaling

(3) Lidar column water vapor measurements using a
HDO absorption line that occurs next to the CO2 ab-
sorption line.

Such filters have a non-uniform wavelength
response, which needs precise calibration.
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Laboratory calibration of filter used on the CO2 / ) | —+-CO, Sounder Wavelengihs
Sounder for the 2016 ASCENDS campaign. A L

Detector (non-linear) Intensity Response Calibration

The received lidar signal undergoes several stages of amplification. These
stages of amplification can result in deviation from linearity, especially if one of
the stages approaches saturation.This deviation needs to be properly calibrated

The Multi-wavelength approach so as to not cause a bias in the XCO2 measurement.

CO, Sounder Full Retrieval Algorithm

- Simple algorithm, applicable to space instrument too
- No a priori CO2 information required, which is suited

to cases where prior and prior covariance are not well CO, Sounder samples the absorption line at many wavelengths
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principal components

Averaging Kernels optimized for uniform vertical sensitivity = Averaging Kernels for principal components
with minimum variance fit

Lidar Water Vapor measurement using

3. By using a Singular Value
Decomposition to get the PCs, retrieval

errors between PCs are uncorrelated.

vertical mixing (e.g. night

900 ' ! 900 1/,

- Lidar measurement of water vapor is important, especially in the absence o

1000 |-

"
L ! 1000

| | ~ time PBL height can be
of an O, channel " Cummemoens ©° “heieceor’ | hard to determine) T

Column Averaging Kernel

g - \Averaging Kernel Cumulative Avleraging Kernell Adva ntages :
- - . Cemswene A . Advantages:
adjacent isotope line NN R | o e
NN . 1. Vertical sensitivity can | o
- f : ool | 1. Principal Components (PCs) capture
_ _ o X - betuned so as to aid flux °° | : : :

- Water vapor affects the dry air fraction, which is used to calculate XCO, Y. | maximally useful information from the
a0\ 5 v i retrieval. 1st PC is a column mean.

- Water vapor lines also interfere with the majority of CO, lines in both v 2. Column mean with . } 2 High der PC de inf "

the 1.6 um and 2.0 um bands. This can cause line-fitting errors and bias. | St ) uniform vertical sensitivity :‘ el el [P e AR E

7 | 7 : + oo | about the vertical distribution of CO2
_ _ _ _ [ | captures changes in CO2 |
- Weather models have much larger spatial resolution than lidar footprint | | regardless of the extent of ;

Retrieved Water vapor over lowa, US
- 2014-08-25 (~6 pm local time) -

clear measurement. o (mm) & / e
of water vapor =012 | stz vemen £ B0, ahser e » Water vapor absorption Interfersnce with CO, 1. We have established a retrieval algorithm and calibra-
+1250 | SR i | in the 1.6 um band2 f\ t::)nlvaliflatidon ap:oroacl: foL Ithe CCI:Z Sounder instrument,
: | 18.75 s s that is also directly applicable to the space version
. Lidar can also —Eoom | - ! /\ y app P
senses horizontal [E[-25.0 , HDO line Wator vapor 2. We have demonstrated water vapor measurements and
water vapor =%§:—J = B nern\ire;(fe i iél;:lgf;ed sbpatial water vapor gradients in the 2014 AS-
: = R — Y { airborne campaign.
gradients.  (EE - 0 el [ LR R AT N I R A BV L O o Y R
M- | 3. We have analyzed the retrieval approach to calculate the
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- - ~0.5 ppm CO,-H,0 interference Wavelength (nm)

compares well against measurements indicating that we
have a good understanding of our instrument.




