Update on the TANSO-FTS-2 Instrument for GOSAT-2

HARRIS

Ronald Glumb, Peter Mantica, Alan Bell, Christopher Ellsworth, Lawrence Suwinski, and Jeremy Dobler. Harris Space and Intelligence Systems. Fort Wayne, Indiana, USA.

GOSAT-2 Provides Improved Measurements of **Greenhouse Gases**

TANSO-FTS-2 is a primary instrument aboard Greenhouse gases Observation Satellite-2 (GOSAT-2). It measures high-resolution spectra of upwelling earth radiance in 5 spectral bands (left) to extract concentrations of greenhouse gases (CO², CH⁴) and artificial emission sources (CO). The development of TANSO-FTS-2 is being performed under a subcontract by Mitsubishi Electric Corporation, the GOSAT-2 prime contractor of Japan Aerospace Exploration Agency (JAXA) GOSAT-2 Project.

Band	Microns	Wavenumbers	Resolution	Mission Purpose
1	0.755 - 0.772	12,950 -13,250	0.2 cm ⁻¹	Total column oxygen; used to derive total column mass
2	1.563 - 1.695	5900 - 6400	0.2 cm ⁻¹	Total column carbon dioxide and methane
3	1.923 - 2.381	4200 - 5200	0.2 cm ⁻¹	Total column carbon dioxide, moisture and carbon monoxide
4	5.56 - 8.45	1183 - 1800	0.2 cm ⁻¹	Methane and moisture
5	8.45 - 14.29	700 - 1183	0.2 cm ⁻¹	Teperature profile, carbon dioxide

Required Projected Value Value	equirement
613 km 613 km	ominal Orbital Altitude

FTS-2 Instrument Provides Five Hyperspectral Infrared Bands with Excellent Signal to Noise

Port Shield Baffle/ **Integrated Optics Assembly (IOA) Glint Shield b**-

Key Components of the FTS-2 Instrument Have Been Completed

Top Row (Left to Right): FOV Monitor Camera, Integrated Optics Assembly Structure, Scene Selection Assembly Structure, Telescope Bottom Row (Left to Right): Spectralon for Solar Calibration Target, Chassis for Command and Control Electronics Unit, Scanner Optical Encoder, Circuit Card Assemblies

Intelligent Pointing Significantly Increases Data Yield

Already Clear at Center of FOV

Provides Clear View Via Repoint

50 60

50 60

Design Features Enable Improved Mission Performance for GOSAT-2

GOSAT-2 Design Feature	Mission Benefits		
 CrIS-Based Passive Detector Cooler 	 Inherently reliable, achieves temperatures needed for IR detectors 		
 New Intelligent Pointing Function 	- Detects cloud-free areas and repoints scanner in real-time to maximize the number of		
	cloud-free measurements		
 Highly Accurate and Stable Scanner 	 Minimizes scene-induced interferogram fluctuations during data collects 		
– Very Linear Signal Outputs	 Minimizes radiance errors due to nonlinearity effects 		
– Interferometer Improvements	 More stable laser metrology laser outputs and more stable ZPD position 		
 Target for ILS Characterization 	 Accurate on-orbit ILS characterizations in two spectral bands 		
 Multiple Spectralon Surfaces in Solar 	 Excellent knowledge of solar calibration target radiances over life 		
Calibration Target			
 – Flight-Proven High-Emissivity Infrared 	 CrIS-based target provides emissivity >0.995 and temperature errors <100mK for precise 		
Calibration Target	calibration of infrared data		
 Stabilized Optical Temperatures 	 Most of instrument is actively temperature controlled to provide enhanced 		
	calibration accuracy		
– Stable Scanner Performance Over Life	- Significant motor torque margin, full outgas of components, robust EMI shielding,		
	reprogrammable servo coefficients		
 Improved Solar Calibration Accuracy 	 Glint shield prevents earth radiance or spacecraft glints from impacting solar 		
	calibration accuracy		
– ILS Target Uniformity	 Integrating sphere ensures very good uniformity for best ILS calibration 		
 Minimized Scanner Disturbances to 	- Scanner peak torques avoid zero-velocity points of interferometer turnaround, which is		
Interferometer	most sensitive for ZPD shifts		
 Negligible Stray Light During Calibration 	 Baffles ensure no stray light impact to calibration 		
 Improved Telemetry for IR Calibration 	- Large number of accurate temperature sensors provide improved calibration corrections		
– Fixed Rate Sampling	 Simplifies onboard processing while ensuring low-noise performance 		

= Cloudy FOV (No IP Improvement)

Intelligent Pointing (IP) uses a high-resolution RGB camera to identify cloud-free regions near the commanded LOS position.

As shown in the right-most images, onboard processing uses the raw camera image to create a cloud mask, and then determines via a convolution the least cloudy area of the FOV (images at right). The instrument LOS is then shifted to the cloud-free region before the interferogram is collected.

In the left-most example region, the percentage of usable cloud-free data collects increases from 20% (green locations) to 46% (green plus blue locations), which is a 2.3X improvement.

Globally, IP is expected to provide about a 2X improvement in cloud-free data yield.

*= Exelis, now part of Harris Corporation