

Additional Bands for the improvement of MicroCarb performance

D. Jouglet (1), P. Lafrique (1), F.M. Bréon (2), D. Pradines (1), V. Pascal (1), F. Buisson (1), J.L. Bertaux (3), A. Hauchecorne (3), V. Sherlock (2) ⁽¹⁾ CNES, Toulouse, France ⁽²⁾ LSCE, Saclay, France ⁽³⁾ LATMOS, Guyancourt, France Contact: denis.jouglet@cnes.fr

ABSTRACT

The objective of the CNES/MicroCarb mission is to retrieve the CO₂ dry air mass mole fraction (XCO₂) with a high accuracy, in order to better quantify the sources and sinks of CO₂ through assimilation into atmospheric transport models.

The MicroCarb instrument design has evolved to a more compact design, using a unique telescope, a unique grating and a unique detector on which all the spectral bands are acquired. This evolution gives the opportunity to easily acquire new bands, additionally to the 0.76 μ m, 1.61 μ m and 2.06 μ m bands.

We discuss here the three new bands that have been studied for their scientific interest (especially for a better CO₂ measurement) and their instrumental feasibility: 1.67 μ m, 1.27 μ m and 2.35 μ m. Final choice will be done very soon and any suggestion or comments are welcome.

2 – MICROCARB NOMINAL BANDS

- L2 performances required by scientists: XCO₂ random error < 1ppm, regional bias < 0.1 ppm.
- **B2:** weak CO_2 at 1.61 μ m
 - Purest area for CO₂
 - But: No information on the aerosol impact

	Parameter	Value		
	Wavelength	0.76 μm, 1.61 μm, 2.06 μm		
	Band widths	> 50 cm ⁻¹		
	Resolution factor ($\lambda/\Delta\lambda$)	> 25 000		
	Signal to Noise Ratio	200 to 500 @ Lmoy		

- **B3:** strong CO_2 at 2.06 μ m
- Most sensitive band to CO₂
- Saturated lines provide information on aerosols
- The aerosols spectral dependence creates a different impact on B2 and B3
- → The simultaneous measurement of B2 and B3 improve the CO_2 performance in

- MicroCarb started phase B (detailed definition) in Feb 2016

- The spectra are now acquired by a unique 2D detector. (See presentation Airbus Defence & Space, ICSO 2016)
- Mission main requirements:

- B1: O₂ at 0.76µm
 - Provides O_2 amount to compute XCO_2
 - Provides information on Psurf (with external information from ECMWF) and on the optical path (presence of aerosols).
 - Requires Fraunhofer lines to evaluate the photosynthesis fluorescence contamination
 - Spectroscopy not fully understood

aerosols contaminated scenes

- The strong contamination by H₂O increases the uncertainty on XCO₂, but provides information on the amount of dry air
- Spectroscopy is less known than in B2

3 – MICROCARB POTENTIAL ADDITIONAL BANDS

- The enhanced instrumental concept gives the opportunity to acquire new spectral bands without decreasing the XCO_2 performances \rightarrow We may choose 1 or 2 additional bands
- It is a great opportunity to improve the CO_2 measurement with aerosols and to measure other species

4 – SPECIFIC STUDY ON AIRGLOW AT 1.27 μ m

- The 1.27 μ m O₂ band is known to exhibit strong emission of airglow due to the photodissociation of stratospheric and mesospheric O₃
- Ignoring airglow in the inversion leads to strong biases on Psurf (~80 hPa)
- Poor literature on this topic

Dedicated study by LATMOS and ACRI, funded by CNES, to determine the possibility to use it with / 0.76 μ m band for an improved XCO2

Modelling of the phenomenon:

■ B5: O₂ at 1.27 μm

- Improve information on Psurf & aerosols in addition with B1 (O₂ at 0.76 μ m)
- Spectroscopy better known than at 0.76 μ m
- But contaminated by an airglow emission (see 4)

- B4: CH₄ at 1.67 μm
 - CH_4 is the second anthropogenic GHG and its emission processes have large uncertainties
- B4+B6: aerosols
 - Measuring CH₄ simultaneously in two spectral windows gives the opportunity to better constrain aerosols (as measuring CO_2 in 2 bands)
- First performances estimates without aerosols show compliance with common requirements

B6: CH_4 , $CO \& H_2O$ at 2.35 μm

- The simultaneous measurement of CO₂ and CO gives access to the origin of CO_2 (incomplete combustions come from anthropogenic emissions and biomass burning)
- Improves information on H₂O to reduce uncertainty on the amount of dry air and XCO_2

(ppmv)	A priori	Require ment	Perf @Lmin	Perf @Lmoy	Perf @Lmax
CO_2	16.79	1	1.18	0.44	0.16
H_2O	1835	NA	670	565	475
\overline{CH}_4	0.085	0.017	0.025	0.013	0.010
CO	0.036	0.01	0.026	0.012	0.004

- Spectroscopy and spectral shape of airglow (impacts centers of O_2 absorption lines)
- Modelling of airglow emission w.r.t. VER (Volume) Emission Ratio)
- A Chemical Transport Model (REPROBUS by F. Lefevre) can provide estimates of VER
- Preliminary comparisons to SCIAMACHY limb measurements
- \rightarrow The study concludes in an accurate comprehension of the phenomenon
- Decontamination of MicroCarb spectra
 - Optimal estimation of airglow can efficiently be included in the MicroCarb inversion tool
 - \rightarrow XO₂ residual biases are very low (0.01 hPa)
 - Possibility to remove the most contaminated channels if necessary

Estimates with aerosols are on going

5 – OTHER CONSIDERED BANDS

Other spectral bands have also been considered but will not be selected

- **H**₂O band (0.94 μ m, 1.37 μ m)
 - Improves information on H₂O to reduce uncertainty on XCO₂
 - Saturated H₂O lines provide a very efficient tool to detect high cirrus
- $N_2O(2.1 \,\mu m, 2.25 \,\mu m)$
 - N_2O is the third anthropogenic GHG and its emission processes have large uncertainties

