

# Optimizing observation geometry using the agile GOSAT pointing mechanism for more precise and accurate X<sub>CO2</sub> retrieval

12th International Workshop on Greenhouse Gas Measurements from Space June 7-9,2016

Jun Yoshida <sup>\*1</sup>, Takahiro Kawashima <sup>\*1</sup>, Hiroshi Sugita <sup>\*1</sup>, Kazuo Hamada <sup>\*1</sup>, Juro Ishida <sup>\*1</sup>, Mamoru Iguchi <sup>\*2</sup>, Akira Tanimoto<sup>\*1</sup>, Hiroshi Nonoyama <sup>\*2</sup>, Katsuhiro Ochiai <sup>\*1</sup>, Takehiko Mizoguchi <sup>\*1</sup>, Masahiko Suto <sup>\*3</sup> and Satoshi Narumi <sup>\*3</sup> \*1 NEC Corporation \*2 NEC Infomatec Systems, Ltd. \*3 NEC Solution Innovators, Ltd.

Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Shuji Kawakami, Yoko Ueda and

Makoto Tanaka Japan Aerospace Exploration Agency, Ibaraki, Japan

## Presentation flow

Extraction of potential parameter sensitive to standard deviation of  $CO_2$  column amount  $\sigma(X_{CO2})$  as Level-2 product of GOSAT/TANSO.

Result

CT angle is extracted. **Geometry among GOSAT**, **Sun and observation point** is very important. Statistical Analysis –of Big data by using Quality Control Engine (QCE)

Verification by analysis of Level-1 and Level-2 product. -Global mapping of  $\sigma(X_{CO2})$  for back-side , nadir and lateral scattering geometry.

-Pointing angle dependency of pressure height and SNR -Polarization characteristics of  $O_2$ -A band region for 2 pointing angles.

Small  $\sigma(X_{CO2})$  (High accurate) for laterals scattering

Conventional

 Analysis by using manual tool.

Interpretation based on physics.

geometry because aerosol affect is low. Future scope

Result

On TANSO mission planning, **different optimal pointing angle** will be selected according to observation points (e.g. CT angle <0 ( lateral scatter) for Sahara desert where atmosphere contain much aerosol ).



## Observation geometry for 3-points mode



Standard deviation of  $X_{CO2}$  ( $\sigma X_{CO2}$ ) or Psurf ( $\sigma$ Psurf) defined among successive 3 observations at the same observation points. (e.g. No. 1,2 and 3)



# Statistical Analysis with Big data analysis approach

#### Purpose

- Investigate factors which contribute to accuracy of column-averaged  $CO_2$  dry air molecule fraction( $X_{CO2}$ ) by using statistical analysis, namely 'big data analysis' approach.
- All parameters as possible as we can were included , those which have not apparent relationship with accuracy of X<sub>CO2</sub> , in order to prevent from any prejudice based on experience, heritage, common sense in the past.
- Methodology
  - Applied technology
    - Invariant analysis (Quality Control Engine :QCE)
    - Visualization of correlation between Quality and each factor
  - Target data (TANSO-FTS, periods of 3 points operational mode) :
    - Level 2 product…GOSAT ACOS Level2 Standard Product V3.3 (Aug. 2010~May 2013)
    - Aeronet data (in-situ field observation data at Railroad Valley (RRV) in U.S.)
  - Target of analysis :

#### [Objective]

- $\checkmark$  Observation accuracy of  $X_{CO2}$  : standard deviation of  $X_{CO2}$  ( see previous page)
- ✓ Observation accuracy of Psurf : standard deviation of surface pressure ( Previous page)

#### [Parameter]

- ✓ Surface atmospheric pressure(Psur f)
- ✓ Pointing angle (AT-axis, CT-axis)
- ✓ Aerosol amount

- ✓ Ground surface albedo
  - ✓  $CO_2$  information volume
  - ✓ Signal –to –Noise ratio(SNR) of spectra



# Big Data Analytics – **QCE**

#### QCE: Quality Control Engine



#### [QCE: Quality Control Engine] \* NEC original

Characteristics #1 : Check all data features (basic statistics) "exhaustively" Characteristics #2 : Determine usefulness of the data "automatically"





# Contributors related with $\sigma$ XCO2 estimated by QCE

| No | Region     | Rank | Contributor(parameter)   | score           | Comments by QCE                                         |
|----|------------|------|--------------------------|-----------------|---------------------------------------------------------|
| 1  | オーストラリア    | 1    | dof_co2_profile          | 1.41            | Raw sensor value itself should be higher                |
|    | Australia  | 2    | albedo_slope_o2          | 1.27            | Higher values of sensor should be higher                |
|    |            | 3    | aerosol water aod mid    | 0.49            | Sensor should vary narrowly                             |
|    |            | 4    | sounding_ct_angle        | 0.45            | Raw sensor value itself should be lower                 |
|    |            | 5    | albedo_slope_weak_co2    | 0.42            | Overall values of the sensor should be higher           |
|    |            |      |                          | <b>↑ Higher</b> | score corresponds to strong correlation with X(CO2)     |
| 2  | アラビア       | 1    | aerosol_total_aod_mid    | 1.58            | Sensor should vary narrowly                             |
|    | Arabian    | 2    | surface_pressure_fph     | 1.49            | Overall values of the sensor should be higher           |
|    |            | 3    | aerosol_kahn_3b_aod_low  | 1.13            | Sensor should vary narrowly                             |
|    | i eninsula | 4    | aerosol_total_aod_low    | 0.94            | Sensor should vary narrowly                             |
|    |            | 5    | aerosol_kahn_3b_aod_high | 0.90            | Imbalanced number of lower values and higher values.    |
|    |            |      |                          |                 | Sensor should have more low values and less high values |
|    |            |      |                          |                 |                                                         |
| 3  | サハラ        | 1    | albedo_slope_o2          | 1.97            | Overall values of the sensor should be higher           |
|    | Sahara     | 2    | aerosol_total_aod_low    | 1.85            | Imbalanced number of lower values and higher values.    |
|    |            |      |                          |                 | Sensor should have more low values and less high values |
|    |            | 3    | dof_co2_profile          | 1.62            | Raw sensor value itself should be higher                |
|    |            | 4    | aerosol_water_aod_mid    | 1.49            | Sensor should vary narrowly                             |
|    |            | 5    | aerosol_kahn_3b_aod_mid  | 1.06            | Imbalanced number of lower values and higher values.    |
|    |            | 5    |                          |                 | Sensor should have more low values and less high values |

Australia…Region with clear sky and little aerosol: X<sub>CO2</sub> accuracy in this region is said to be high

- Boundary condition of atmospheric model ranked higher but these contributors are out of scope in the present discussion.
- CT angle was extracted as higher ranking (No.4). Smaller CT angle was correlated with higher  $X_{CO2}$  accuracy)
- On the other hand SNR, surface pressure (indicator of elevation) were not extracted.

Arabian Peninsula, Sahara… Region with clear sky but much aerosol: X<sub>CO2</sub> accuracy in this region is said to be low

 Parameters related with aerosol are highly ranked. Smaller and more stable in time is correlated with higher X<sub>CO2</sub> accuracy.



#### Purpose

Verification of results of big data analysis, as follows.

CT angle really key parameter ? Is there any relation with SNR or surface pressure which have been ever thought to be critical factors?

#### Methodology

Global mapping of various Level 2 product Data for back side scattering geometry (CT angle>0 ), nadir and lateral scattering geometry (CT angle < 0)

- Target data (TANSO-FTS, periods of 3 points operational mode) :
  - Level 2 product…GOSAT ACOS Level2 Standard Product V3.3 (Aug. 2010~May 2013)
  - Aeronet data (on-sight field observation data at Railroad Valley (RRV) in U.S.)
- Objective
  - Standard deviation of  $X_{CO2}$  (  $\sigma X_{CO2})$
  - Surface pressure
  - SNR

- Ratio of P-polarization state band/S-polarization state band (only for Band1) wavelength region: O<sub>2</sub>-A absorption band, Fraunhofer lines and Atmospheric windows
- Aerosol Optical thickness(AOT) \*Indicator of aerosol amount In-situ measurement at Railroad Valley,U.S. (Validation site)



# Global mapping of $\sigma X_{CO2}$ for CT angles



σX<sub>co2</sub> : standard deviation of X<sub>co2</sub> Smaller means Higher accuracy

| 1 | σX <sub>CO2</sub>          | Number of<br>observation<br>points |  |  |  |
|---|----------------------------|------------------------------------|--|--|--|
| 2 | Lateral scatter .vs. Nadir |                                    |  |  |  |
| 3 | Lateral scatter < Nadir    | 2242                               |  |  |  |
| 4 | Lateral scatter > Nadir    | 811                                |  |  |  |
| 3 | Nadir .vs. Back scatter    |                                    |  |  |  |
|   | Nadir < Back scatter       | 1603                               |  |  |  |
|   | Nadir > Back scatter       | 1451                               |  |  |  |

**Observations with lateral scatter are correlate with high accurate X<sub>CO2</sub> product** 

# $X_{CO2}$ accuracy .vs. surface pressure for various CT angles



-Lateral case is correlated with high accurate  $X_{CO2}$  product -No obvious correlation between  $\sigma X_{CO2}$  between surface pressure



# Global mapping of SNR for CT angles

40



Band1P SNR (lateral Scat.-Nadir)



Band2P SNR (lateral Scat.-Nadir) average of Weak CO2(P) -10-30-30

**Obviously more blue points** than red points.  $\Rightarrow$  SNR in case of Nadir is higher than lateral scattering case.  $\Rightarrow$  Combined with fact that  $\sigma X_{co2}$  is lower for lateral scattering case than Nadir case, SNR is not dominant factor for X<sub>co2</sub> accuracy.



#### Purpose

Verification of results of big data analysis, as follows.

'CT angle really key parameter ? Is there any relation with SNR or surface pressure which have been ever thought to be critical factors? '

#### Methodology

Global mapping of various Level 1 product Data for back scattering geometry (CT angle>0 ), nadir and lateral scattering geometry (CT angle < 0)

• Target data (TANSO-FTS, periods of 3 points operational mode) :

• Period of 3 points scanning mode of TANSO-FTS

- Level 1 product…GOSAT Level1B product Ver.201201 (August 2010 $\sim$  July 2013)
- Aeronet data (in-situ field observation data at Railroad Valley (RRV) in U.S.)
- Objectives

11

- Ratio of P-polarization state band/S-polarization state band (only for Band1) Wavelength region: O<sub>2</sub>-A absorption band, Fraunhofer lines and Atmospheric windows
- Optical depth of atmosphere (Indicator of aerosol amount)

In-situ measurement at Railroad Valley



#### Spectral analysis at Level 1

Typical sample of spectrum of Band1 observed by TANSO on-orbit



#### **Blue : Solar diffuser** Magenta : Earth observation

#### Relation between polarization characteristics and CT-angels





#### Global mapping investigation

1.0100

1.6075

1.0050

1.0033

1.0000

0.9915

0.9950

3283

1.6075

1.0050

1.0023

1.0000

0.9975

1.6075

1.0050

1.0023

1.0000

0.9975

0.9935

In Sahara where is much aerosol in the air, clear correlation between P/S ratio and scattering direction(CT angle ) in case of O2-A band.

On the other hand, no apparent relation in case of Fraunhofer line

<u>This fact suggests</u> <u>some relation between</u> <u>O<sub>2</sub>-A band and aerosol</u> <u>amount.</u>

By taking advantage of polarization characteristics of  $O_2$ -A band, aerosol affect to  $X_{CO2}$  accuracy is expected to be decreased.



# P/S ratio at O2-A band region for 2 CT angles at Railroad Valley(validation site)



## Discussion

#### Aerosol scattering intensity map (in case of small aerosol radius)



Note: definition of P and S polarization in scattering plane is different or almost interchanged from that of TANSO, because scatter plane is almost perpendicular to orbit plane.)

scattering is **partial polarized** 

fluctuate in case of back

light scattered.



## Conclusion

- In order for factorial analysis of improvement of X<sub>CO2</sub> accuracy observed GOSAT/TANSO , following new hybrid method was introduced.
  - First, extraction of potential factors by finding direct correlation between Level 2 product as 'X<sub>CO2</sub>' and any low level parameters like 'pointing angle ' on basis of big data analysis approach as a new statistic method
  - Next, for extracted factors, global mapping of product (band1 &2 ) or spectral profile analysis based on scientific and engineering approach as a conventional method.
  - As a result of statistical analysis, 'pointing angle' was extracted as one of biggest contributors, except for boundary conditions of atmospheric or spectral model.
  - Consecutive analysis by global mapping of product shows contribution of 'pointing angle' to  $X_{CO2}$  was again turn out to be larger than other contributor like SNR and surface pressure which have been ever thought to be critical factors.
  - The reason why 'pointing angle' is important, is thought to be relation with aerosol scattering direction. If CT pointing angle is selected to be minus which realize scattering angle of about >~40deg (lateral scatter), aerosol affect to  $X_{CO2}$  can be decreased because aerosol scatter is occurred mainly in forward or backward direction with respect to incident light direction. Moreover, S-state linear polarized light in a sense of scattering plane (which corresponds to P-state band of TANSO) is selectively scattered in case of lateral scattering(CT angle <0). The observed light intensity in case of lateral scattering (CT angle <0). The observed light intensity in case of lateral >0 where partial polarized light is scattered.
  - Reflected above 'hybrid analysis' conclusion , possibility of selection of the most preferable pointing angle to minimize aerosol affect will be studied on TANSO mission planning .(e.g. CT angle <0 for Sahara desert where atmosphere contain much aerosol )





