Airborne measurements of atmospheric methane using pulsed laser transmitters

<u>Kenji Numata¹</u>, Haris Riris¹, Stewart Wu¹, Brayler Gonzalez¹, Michael Rodriguez², William Hasselbrack², Molly Fahey¹, Anthony Yu¹, Mark Stephen¹, Jianping Mao³, Stephan Kawa¹ ¹NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA ²Sigma Space, Inc., 4600 Forbes Blvd, Lanham-Seabrook, Maryland 20706, USA ³University of Maryland, College Park, Maryland 20742, USA

At NASA Goddard Space Flight Center, we have been developing a laser-based technology needed to remotely measure methane (CH₄) from orbit. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nm, coincident with a CH₄ absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The two laser transmitters were successfully operated in the NASA's DC-8 aircraft, measuring methane from 3 to 13 km with high precision.

Background

Methane measurements for earth science

- \circ Strong greenhouse gas (>x20 radiative forcing than CO₂)
- Closing the carbon budget, global coverage
- Methane hydrate in the Arctic (where passive spectrometer won't work)

Requirements for space instrument

- Wavelength: ~1.65µm (outside fiber amplifier band)
- Energy: $>\sim 250 \mu J$ (for 1% error, 10kHz rep. rate)

on DC-8

■2015 CH₄ airborne campaign

Aircraft: NASA DC-8 (NA817)

- 1 engineering & 2 science flights, total ~12 hours
- From Armstrong Flight Research Center, CA
- Telescope: 20cm, 300µrad field of view
 - Transmitter divergence: ~150μrad
- Detector: DRS eAPD, 90% QE, ~10⁹V/W Compare OPA-OPO performance

Burst-mode OPA

Pump laser (1064nm)

- Yb-fiber amplifier, LMA fiber, built by Fibertek
- Burst mode, 20 micro pulses, 3ns micro pulse width
- Works with low power (~20mW) seed
- Minimizes output linewidth broadening

Nonlinear crystal

Seeded OPO

Pump laser (1064nm)

- Seeded, active Q-switch, Nd:YAG laser built by NASA/GSFC
- Single pulse, ~1.5mJ, ~60ns pulse width
- Works with low power (~20mW) seed

Nonlinear crystal • 35mm MgO:PPLN

Methane lidar instrumei

- 50mm MgO:PPLN
- Scanning seed laser
 - Beat against master laser for wavelength monitor

4 slave seed lasers

- **Optical PLL** \bigcirc
- Fast optical switch

Output energy

 \circ Reduced to \sim 40µJ per burst (not enough for space) • Due to several simplifications for the airborne demonstration Linewidth: ~500MHz Estimated from CH4 reference cell Number of wavelength: 20 Step scanned across the line @ 10kHz

Burst train

() Pulse pattern generato

Signal energy, best c 20 24 P Last stage pump current [A] Output energy of our OPA (per burst)

P

()

Output energy

°²40µJ (satisfying requirement for space) @ 10kHz • Too much energy for the airborne demonstration

Beam

expande

- Linewidth: <~100MHz</p>
- Number of wavelength: 5

OPO cavity control

- Phase modulation
- Mirror on PZT
- Temperature control

Pump laser

Analysis overview

○ 1s averaging, uniform 1900ppb model • No DRS non-linearity correction yet o ~0.5% error for the best ~9 min section • Stable output energy • Detector gain minimized at low altitude

OPO flight breadboard

Problems identified

Detector saturation (too high energy)

GPS time [sec] Measured CH₄ mixing ratio & in-situ monito

Analysis overview

○ 1s averaging, uniform 1900ppb model o ~0.4% error for the best ~20min section • Stable signal up to the highest altitude (~13km)

Problems identified

- Power stability (unstable LMA fiber mode)
- Low output energy, wide linewidth
- Retrieval with cloud return

Output wavelength during fligh

1