Atmospheric CO, Variability Observed from ASCENDS Flight Campaigns
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» Atmospheric CQO, is the major climate forcing for the changing
climate. Its concentration (or volume mixing ratio XCQ,) has
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carbon amounts within the Earth’s carbon cycle cannot be
accounted for even in observed global annual means.

* U.S. National Research Council has identified the need of a
future NASA Active Sensing of CO, Emissions during Nights,
Days, and Seasons (ASCENDS) mission for improved
determination of atmospheric carbon sources and sinks. NASA
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differences in the corn growing phase and meteorological
conditions even in the same time period of a year. Furthermore,
considerable differences in atmospheric CO, profiles were found
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