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Key Messages .

0 OCO-2 is providing us with real data constraints on the magnitude and
phasing of ENSO-CO, relationship

0 Oceans do contribute to the ENSO CO, effect

0 We find this effect to be consistent with observations from sparse in situ
data
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Background

Q Correlations between atmospheric CO, } evso s
growth rate and ENSO activity have iy
been reported since the 70s (see o
Bacastow 1970)

0 Studying the response of CO, > how
feedbacks between the physical climate
system and global carbon cycle operates

Accumulation rate
in atmosphere
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Source: Sarmiento and Gruber [2006]

Does OCO-2 observations

provide insight on the
relationship between ENSO
and the carbon cycle?
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GOSAT-ACOS and OCO-2 era

Coverage over Pacific ocean for a generic month 5°N - 5°S c
and OCO-2 (2015) 170°W - 120°W
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Observable trends in 2015-2016
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Carbon system 1n the eq. Pacific

Normal Conditions

CO, outgassing
I
CO, outgassing

“Thermocline

0 Normal conditions: strong upwelling of cold subsurface waters that have
high potential pCO, + inefficient biological pump =2 high CO, outgassing

0 El Nino conditions: deepening of thermocline, reduction in upwelling +
morte efficient biological pump =2 decreases CO, outgassing



Putting it all together:

Two phases of CO, response

0 Development Phase of ENSO: Spring-Summer 2015

= Typical reduction in CO, outgassing over the Tropical Pacific — negative CO,
anomalies throughout Nino 3 and 4

= This hypothesis is supported by TAO data

O Mature Phase of ENSO: Fall 2015 onwards

= Increase in CO, anomalies registered over much of Nino 3 and Nino 4 - due to
enhanced burning over SE Asia, reduction in biospheric activity

= Impact of biomass burning emissions 1s supported by MOPITT CO
observations
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The relationship between tropical CO; Auxes and the
El Nifo-Southern Oscillation
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Rayner et al. [1999]

Schwalm et al. [2011]
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Ocean vs. Terrestrial contribution

Jones et al. [2001]
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Abstract. The El Nifio Southern Oscillation is the domi- tegrated responses from —1.15 to +0.49PgCyr~". Despite

Climate—Carbon Cycle Model Study

CoX, AND STEVEN A. SPALL

iire, United Kingdom

1 form 24 April 2001)

»ncentration of carbon dioxide (CO,) even
his variability is well correlated wi
ral carbon cvcle ides

lin et al. [2003]




Causes of uncertainty

QO Signals captured in the X, anomalies
= can X, represent local effects?

= or are the anomalies representative of a global trend and simply responding to
global patterns?

QO Stitching together two disparate data sources, 1.e., GOSAT-ACOS and
OCO-2 datasets

= changes in sampling density, observation strategy
= changes in instrument type

= data gaps
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What do OCO-2 inversions tell us?

R TEPa flux estimates for 2015
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Key Messages

0 OCO-2, with its unprecedented coverage over the Pacific Ocean, provides us
with actual data constraints on the magnitude and phasing of ENSO-CO,

relationship

0 Oceans do contribute to the ENSO CO, effect
= suppressed outgassing from the oceans happen early, followed by a larger (and
lagged) response from terrestrial land masses
= if it weren’t for the reduction in outgassing from the ocean, the impact from
terrestrial sources would be larger

0 We find this effect to be consistent with observations from sparse in situ
data
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