Global Modeling and Assimilation Office

Kyoto

IWGGMS-12

June 8, 2016

Influence of El Nino on atmospheric CO₂: Findings from the Orbiting Carbon Observatory-2

Abhishek Chatterjee¹, M. Gierach², B. Stephens³, A. Sutton⁴, and D. Schimel²

¹ USRA GESTAR, NASA GMAO

² NASA Jet Propulsion Laboratory

³ National Center for Atmospheric Research

⁴ NOAA Pacific Marine Environmental Laboratory

- □ OCO-2 is providing us with real data constraints on the magnitude and phasing of ENSO-CO₂ relationship
- \Box Oceans do contribute to the ENSO CO₂ effect
- We find this effect to be consistent with observations from sparse in situ data

Background

- Correlations between atmospheric CO₂ growth rate and ENSO activity have been reported since the 70s (see Bacastow 1976)
- Studying the response of CO₂ → how feedbacks between the physical climate system and global carbon cycle operates

Source: Sarmiento and Gruber [2006]

Does OCO-2 observations provide insight on the relationship between ENSO and the carbon cycle?

GOSAT-ACOS and OCO-2 era

Coverage over Pacific ocean for a generic month GOSAT-ACOS (2010) and OCO-2 (2015)

Observable trends in 2015-2016

 Time-series showing the temporal evolution of X_{CO2} anomalies

Sep 2014 - Feb 2016

Carbon system in the eq. Pacific

- □ Normal conditions: strong upwelling of cold subsurface waters that have high potential pCO_2 + inefficient biological pump → high CO_2 outgassing
- □ El Nino conditions: deepening of thermocline, reduction in upwelling + more efficient biological pump → decreases CO₂ outgassing

Putting it all together: Two phases of CO_2 response

Development Phase of ENSO: Spring-Summer 2015

- Typical reduction in CO₂ outgassing over the Tropical Pacific negative CO₂ anomalies throughout Nino 3 and 4
- This hypothesis is supported by TAO data

□ Mature Phase of ENSO: Fall 2015 onwards

- Increase in CO₂ anomalies registered over much of Nino 3 and Nino 4 due to enhanced burning over SE Asia, reduction in biospheric activity
- Impact of biomass burning emissions is supported by MOPITT CO observations

Ocean vs. Terrestrial contribution

GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO.4, PAGES 493-496, FEBRUARY 15, 1999

The relationship between tropical CO₂ fluxes and the El Niño-Southern Oscillation

Peter J. Rayner¹ and Rachel M. Law CRC for Southern Beninghere Metoorology, Monash University, Clayton, Australia

Roger Dargaville² Scient of Earth Scimon, University of Melbour

Abstract. This paper summarises some fea

Biogeosciences, 8, 2493–2506, 2011 www.biogeosciences.net/8/2493/2011/ doi:10.5194/bg-8-2493-2011 © Author(s) 2011. CC Attribution 3.0 License.

VOLUME 14

JOURNAL OF CLIMATE

1 November 2001

Jones et al. [2001]

Climate-Carbon Cycle Model Study

COX, AND STEVEN A. SPALL

ire, United Kingdom

1 form 24 April 2001)

ncentration of carbon dioxide (CO_2) even his variability is well correlated with the El ral carbon cycle provides a valuable mech-

ylin et al. [2005]

Rayner et al. [1999]

Author(s) 2011. CC Attribution 3.0 License.

Does terrestrial drought explain global CO₂ flux anomalies induced by El Niño?

C. R. Schwalm¹, C. A. Williams¹, K. Schaefer², I. Baker³, G. J. Collatz⁴, and C. Rödenbeck⁵

 ¹Graduate School of Geography, Clark University, Worcester, MA 01610, USA
²National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80309, USA
³Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
⁴Hydrospheric and Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

⁵Max Planck Institute for Biogeochemistry, 07701 Jena, Germany

Received: 24 March 2011 – Published in Biogeosciences Discuss.: 2 May 2011 Revised: 23 August 2011 – Accepted: 24 August 2011 – Published: 9 September 2011

Schwalm et al. [2011]

Causes of uncertainty

$\hfill\square$ Signals captured in the X_{CO2} anomalies

- can X_{CO2} represent local effects?
- or are the anomalies representative of a global trend and simply responding to global patterns?
- Stitching together two disparate data sources, i.e., GOSAT-ACOS and OCO-2 datasets
 - changes in sampling density, observation strategy
 - changes in instrument type
 - data gaps

What do OCO-2 inversions tell us?

- We see a robust and credible pattern of flux behavior well synchronized with ENSO
- Geostatistical inversions to keep the estimates as data driven as possible

Key Messages

- OCO-2, with its unprecedented coverage over the Pacific Ocean, provides us with actual data constraints on the magnitude and phasing of ENSO-CO₂ relationship
- \Box Oceans do contribute to the ENSO CO₂ effect
 - suppressed outgassing from the oceans happen early, followed by a larger (and lagged) response from terrestrial land masses
 - if it weren't for the reduction in outgassing from the ocean, the impact from terrestrial sources would be larger
- We find this effect to be consistent with observations from sparse in situ data

Acknowledgements

- GOSAT Project, ACOS and OCO-2 team, esp. D. Crisp, A. Eldering, M. Gunson, C. O'Dell, among others
- P. Wennberg (Caltech), J. Worden (JPL), S. Wofsy (Harvard Univ.), among others

References

- Bacastow [1976], Nature, 261, doi: 10.1038/261116a0
- Jones et al. [2001], *J. Climate*, 14, pp. 4113-4129
- Peylin et al. [2005], Global Biogeochem. Cycles, 19, doi:10.1029/2003GB002214
- Rayner et al. [1999], *GRL*, 26(4), pp. 493-496
- Sarmiento and Gruber [2006], Chp. 10, Ocean Biogeochemical Dynamics
- Schwalm et al. [2011], *Biogeosciences*, 8, doi:10.5194/bg-8-2493-2011
- Sutton et al. [2014], *Global Biogeochem. Cycles*, 28, doi:10.1002/2013GB004679

QUESTIONS?

abhishek.chatterjee@nasa.gov