12th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-12)

June 7 (Tue) - 9 (Thu), 2016, Kyoto University, Kyoto, Japan

Surface Modelling of CO₂ Concentrations based on Flight Test of TanSat Instruments

TianXiang Yue, LiLi Zhang, Yu Liu, JianHong Guo

Institute of Geographical Sciences and Natural Resources Research, CAS

YuQuan Zhen, Chao Lin

Changchun Institute of Optics, Fine Mechanics and Physics, CAS

2016.06.09

2. Ground observations

3. A method for surface modelling

4. Surface modelling of CO₂

5. Discussion

Contents

1. The flight test 2. Ground observations 3. A Method for surface modelling 4. Surface modelling of CO₂ 5. Discussion

- Fixed wing aircraft, Y-12 B-3843;
- Maximum flying speed, 350 km per hour;
- Highest height, 7000 m;
- Longest flying distance, 1340 km;

Forward model

Fundamental Equation of atmospheric radiative transfer

$$\mu \frac{dI(\tau,\mu)}{d\tau} = I(\tau,\mu) - J(\tau,\mu)$$

- μ : cosine of zenith angle
- I: specific intensity
- J: source function (multiple scattering)
- τ : optical depth

SCIATRAN model

--- (University of Bremen, Germany)

Inverse model

• Measurement Description

 $\mathbf{y} = f(\mathbf{x}) + \varepsilon$

y: measurement vector x: state vector f(x): forward model ε : measurement error

Cost Function $\chi^{2} = [\mathbf{y} - f(\mathbf{x})]^{T} \mathbf{S}_{\varepsilon}^{-1} [\mathbf{y} - f(\mathbf{x})] + (\mathbf{x} - \mathbf{x}_{a})^{T} \mathbf{S}_{a}^{-1} (\mathbf{x} - \mathbf{x}_{a})$

 x_a : *a priori* state vector S_a : measurement error covariance S_a : *a priori* error covariance

• Levenberg-Marquardt method

 $\mathbf{x}_{i+1} = \mathbf{x}_i + [(1+\gamma_i)\mathbf{S}_a^{-1} + \mathbf{K}_i^T\mathbf{S}_{\varepsilon}^{-1}\mathbf{K}_i]^{-1}[\mathbf{K}_i^T\mathbf{S}_{\varepsilon}^{-1}(\mathbf{y} - f(\mathbf{x}_i)) - \mathbf{S}_a^{-1}(\mathbf{x}_i - \mathbf{x}_a)]$

dx: state vector update K: weighting function (Jacobian) γ: Levenberg-Marquardt parameter

(Rodger, 2000)

	Wave band 1	Wave band 2
Wavelength range (nm)	758-772	1592-1625
Spectral resolution (nm)	0.044	0.13

2. Ground observations

3. A Method for surface modelling

4. Surface modelling of CO₂

5. Discussion

Spatial distribution of ground observations

• 油碱市

Wetland 12

ChangShan Town

Area of ChaGan Lake

LongHua Forest Garden

JingHu Lake Garden

SongYuan City

Contents

1. The flight test

2. Ground observations

3. A Method for surface modelling

4. Surface modelling of CO2

5. Discussion

.....

In terms of the fundamental theorem of surfaces, a surface is uniquely defined by the first fundamental coefficients and the second fundamental coefficients.

Ref.

- TianXiang Yue, ZhengPing Du, DunJiang Song et al. 2007. Geomorphology 91(1-2): 161-172.
- TianXiang Yue, DunJiang Song, ZhengPing Du, et al. 2010. International Journal of Remote Sensing 31 (8): 2205-2226.
- Tian-Xiang Yue, Shi-Hai Wang. 2010. International Journal of Geographical Information Science 24 (11): 1725 1743.
- Tian-Xiang Yue, Chuan-Fa Chen, Bai-Lian Li. 2010. Transactions in GIS 14 (5): 615-630.

The first fundamental coefficients are used to express the intrinsic geometric properties that do not depend on the shape of the surface, but only on measurements that we can carry out while on the surface itself.

$$z = f(x, y)$$

$$\begin{cases} E = r_x \cdot r_x = 1 + f_x^2 \\ F = r_x \cdot r_y = f_x f_y \\ G = r_y \cdot r_y = 1 + f_y^2 \end{cases}$$

The second fundamental coefficients reflect the local warping of the surface, namely its deviation from a tangent plane at the point under consideration, which can be observed from outside the surface.

Ref.: Tian-Xiang Yue. 2011. Surface Modelling: High Accuracy and High Speed Methods. New York: CRC Press. http://www.crcpress.com/product/isbn/9781439817582

High accuracy surface modeling (HASM), taking global approximate information (e.g., remote sensing images or model simulation results) as its driving field and local accurate information (e.g., ground observation data and/or sampling data) as its optimum control constraints.

The Fundamental Theorem of Earth's Surface Modelling: An Earth's surface system or a component surface of the Earth's surface environment can be simulated with HASM when its spatial resolution is fine enough, which is uniquely defined by both extrinsic and intrinsic invariants of the surface.

From FTESM, seven corollaries have been deduced, corresponding to interpolation, upsaling, downscaling, data fusion and data assimilation respectively

Ref.

TianXiang Yue, Yu Liu, MingWei Zhao, ZhengPing Du, Na Zhao.
2016. Environmental Earth Sciences 75(9): article 751 (pages 1 -12).

Contents

The flight test Ground observations A Method for surface modelling

4. Surface modelling of CO2

5. Discussion

longitude(E°)

XCO2 based on flight data

Method	Kriging	IDW	HASM
Mean absolute error (ppm)	1.87	1.99	1.74
Mean relative error (%)	0.46	0.49	0.43

XCO2 surface based on captive balloon data

XCO2 based on captive balloon data

Test area: 220 km×50 km

102.94, 102.94, 102.94, 102.94, 102.94, 102.94, 102.94, 102.94, 104.94, 104.94, 104.94, 104.94, 104.94,

CO2 surface based on ground observation data

CO2 based on ground observation

Test area: 220 km×50 km

Normalized XCO2 surface based on flight data

Normalized XCO2 surface based on captive balloon data

Normalized CO2 surface based on ground observation data

Contents

The flight test Ground observations A Method for surface modelling Surface modelling of CO₂

5. Discussion

5. Discussion

①The observation time is not same

- Daily mean XCO2 concentrations from flight data, September 11, 14 and 16, 10:00 to 13:00
- Daily mean XCO2 concentrations from captive balloon data, September 8 15, 8:00–14:00
- Daily mean CO2 concentrations from ground observations, September 8 - 17, whole day
- **②** Different heights
- Flight, 5000 m
- Captive balloon, 0 1000 m
- Ground observations, 2 m

5. Discussion

- **③** Development of various new systems under the Fundamental Theorem of Earth's Surface Modelling
- For spatial interpolation
- For data fusion
- For data assimilation
- For upscalling
- For downscaling

Thank you for your attention!