12th International Workshop on Greenhouse Gas Measurements from Space (IWGGMS-12)

June 7 (Tue) - 9 (Thu), 2016, Kyoto University, Kyoto, Japan

East Asia Regional CO₂ Concentrations Observed by GOSAT - Spatial and Seasonal Variations

Ke-Sheng Cheng

Department of Bioenvironmental Systems Engineering National Taiwan University

Introduction

- CO2 concentration estimated by GOSAT FTS (XCO2) were collected for the period of 2009 – 2015.
- We focus on analyzing the spatial and seasonal variations of CO2 concentrations in East Asia Region (Longitude E50 – E150, Latitude N90 – S10).

Study Area

- East Asia
 - China
 - Japan
 - Korean Peninsula
 - Mongolia
 - Taiwan
- Period of data collection: 2009 -2016

- Spatial resolution of the FTS CO2 concentration (XCO2) is 1.5 km by 1.5 km.
- Grid cells of 1°×1° were used in this study. A total of 10201 cells in the study area. (GCO2: Grid average CO2 concentration)

FTS XCO2 data availability

Time period	Cells with data	Percentage	Avg # of measurem ents per cell	Avg CO2 concentrati on (ppm)	Stdev of CO2 concentration (ppm)	Time period	Cells with data	Percentage	Avg # of measurem ents per cell	Avg CO2 concentrati on (ppm)	Stdev of CO2 concentration (ppm)
2009_6,7,8	821	8.05	5	383.3	1	2011_12,1,2	769	7.54	5.6	388.9	1.4
2009_9,10,11	1426	13.98	4.1	381.8	1.7	2012_3,4,5	299	2.93	5.1	392.3	0.9
2009_12,1,2	1211	11.87	4.5	384.5	1.3	2012_6,7,8	556	5.45	3.4	393	0.8
2010_3,4,5	545	5.34	4.2	388.7	1	2012_9,10,11	559	5.48	4.5	387.9	1.5
2010_6,7,8	851	8.34	3.4	389.2	0.7	2012_12,1,2	838	8.21	5	392.2	1.4
2010_9,10,11	984	9.65	3.4	384.5	1.2	2013_3,4,5	331	3.24	5.2	395.2	1
2010_12,1,2	791	7.75	5.9	387.7	1.3	2013_6,7,8	754	7.39	3.6	396	0.8
2011_3,4,5	373	3.66	5.6	390.5	1	2013_9,10,11	653	6.4	4.1	391	1.6
2011_6,7,8	741	7.26	3.7	391.6	0.9	2013_12,1,2	729	7.15	4.5	394.4	1.1
2011_9,10,11	581	5.7	3.8	385.7	1.3	2014_3,4,5	538	5.27	3.3	398.7	0.6

Trend and Seasonal Variation of XCO2 in the East Asia Region

trend of XCO2

trend of XCO2 on land

year

dioxide in the Northern Hemisphere.

Tellus XII (1960), 2

Seasonal Variation of FTS XCO2

season	mean	sd		
spring	392.4977	4.360145		
summer	385.8039	4.903655		
autumn	388.1570	4.458877		
winter	392.6235	4.055581		

Spring: March – May Summer: June – August Autumn: September – November Winter: December - February

summer

Increasing trend of seasonal XCO2

• These latitudinal differences in fluctuation are the result of photosynthetic activity by plants. As plants begin to photosynthesize in the spring and summer, they consume CO_2 from the atmosphere and eventually use it as a carbon source for growth and reproduction. This causes the decrease in CO₂ levels that begins every year in May. Once winter arrives, plants save energy by decreasing photosynthesis. Without photosynthesis, the dominant process is the exhalation of CO_2 by the total ecosystem, including bacteria, plants, and animals.

WHY ARE SEASONAL CO2 FLUCTUATIONS STRONGEST AT NORTHERN LATITUDES? (The Keeling Curve, SCRIPPS Institution of Oceanography, UCSD)

Modeling Spatial Variability of XCO2

- Spatial variability modeling (semivariogram)
- Spatial interpolation (Kriging method)
- Preliminary results and analyses

Semivariogram Modeling of XCO2

- Seasonal semivariograms
 - Ranges are approximately 12°.
 - Sills (variance of XCO2) mostly vary in a range from 2.5 to 5 ppm.
 - Semivariograms of the Dec Feb and March May periods have higher sills than the June August and September November periods.

Spatial distribution of XCO2 estimates and kriging variance

Night-time image of the Suomi NPP satellite

Conclusions

- XCO2 shows an increasing trend since 2009.
- XCO2 are highest in spring (April or May) and lowest in summer (July or August).
- Influence range of XCO2 is approximately 1200 km.
- Areas of higher XCO2 in China are roughly consistent with areas of higher population densities.

參考文獻

- GOSAT/IBUKI Data Users Handbook, 2011, Japan Aerospace Exploration Agency, National Institute for Environment Studies, Ministry of the Environment.
- Kimberly, B. 2013. Nighttime Lights Compositing Using the VIIRS Day-Night Band: Preliminary Results
- Zhu Liu, 2015, Carbon Emissions Report 2015, Associate, Energy Technology Innovation Policy research group, China.