Amazon Column CO₂ Observations from Ground and Space to Evaluate Tropical Ecosystem Models

M. Dubey¹, H. Parker¹, K. Myers¹, P. Wennberg², D. Wunch², N. Allen³, JF Blavier⁴, S. Kawa⁵, G. Keppel-Aleks⁶, C. O'Dell⁷, D. Baker⁷, A. Michalak⁸, C. Frankenberg¹, J. Miller⁹, A. Jacobson⁹ & S. Basu⁹

¹Los Alamos National Laboratory, ²Caltech, ³Harvard, ⁴JPL, ⁵NASA-Goddard, ⁶Univ. of Michigan, ⁷CSU, ⁸Stanford and ⁹NOAA

Funded by DOE, OBER, TES/NGEE-Tr (Dan Stover PM) Operational support by GoAmazon, ARM (Sally McFarland PM)

IWGGMS meeting, June 2 2016, Jeju, S. Korea

Evaluate Amazon Carbon Cycle Mechanisms

- Amazon Carbon Budget
 - Biomass burning emissions and rainforest uptake
- Leaf phenology explain *in situ* Amazon tower seasonal data but are missing in models: Does this scale up?
- TCCON-Manaus X_{CO2} Seasonal Cycle
 - Isolate rainforest from fire (CO), trend & transport terms
- TCCON-Manaus X_{CO2} Daytime Drawdown
 - Isolate photosynthesis from respiration
- TCCON OCO-2 Comparisons

Tropical Carbon-Climate Feedback Uncertain: Large Reservoir, Dynamic Fluxes, Multiple Sources, Sparse Data

- Stores 150-200 PgC
- Cycles 18 Pg C/y
- Large CO₂ sources & sinks
- Uptake '90-'07 ~0.5 PgC/y
- Processes at daily, seasonal & decadal time scales from fires, rainforest & land use change
- Need to scale 'sparse finescale" data to coarse GCM grid and evaluate predictions of Amazon carbon cycle response to climate & land-use change.

0.3

Leaf development & demography explain photosynthetic seasonality in Amazon evergreen forests

EST. 1943

elence otosynthesis

Wu et al. Science 2016

TCCON in Amazon Rainforest Oct 14 – July 15

- Measure column dry column mixing ratios of trace gases to evaluate models
- Seasonality of CO_2 , CO, CH_4 , N_2O , H_2O and HOD.
- Delineate CO₂ changes from global secular rise, biomass burning & rainforest uptake.
- Evaluate CO₂ seasonal change in OCO-2 data.

os Alamos

 Compare seasonality and daily photosynthetic uptake with optimized carbon
transport models

Decompose X_{CO2} (t): Detrend (-2.5ppm/y) and subtracting fire contributions (CO) to get biogenic

TCCON Seasonal Observations Compared with "Optimized" Global Transport Models (14-15)

Manaus Footprint (3 day): Transport Affects X_{CO2}

Belikov et al ACPD 2016

Remove Transport: C-Tracker S. Am. Mask

Daily CO₂ photosynthetic drawdown

UNCLASSIFIED

Daily Photosynthetic X_{CO2} Drawdown 12 hr (Local Amazon Signal)

> TCCON -2.1 ppm -0.4 ppm **GFED CTNRT** -0.3 ppm Basu* -0.5 ppm -0.0 ppm Edinb -0.1 ppm Schuh CAMS* -0.9 ppm MACC -0.1 ppm

TCCON > 4•Model

*Do not simulate seasonality

OCO-2 - TCCON Comparison (5 x 10 deg, 1 day)

OS

TCCON-OCO2 X_{CO2} Comparison @ Manacupuru

Conclusion

- Column X_{CO2} Observations in the Amazon rainforest show:
 - Seasonal cycle that is a sum of 2.3 ppm (biogenic), 0.4 ppm (transport), -1.5 ppm (biomass burning) and 2.5 ppm (trend)
 - Implies a net CO2 sink '14-'15 sink in the wet Manaus region
 - Mean daily photosynthetic drawdown of -2.1 ppm.
- 5 of 7 transport models capture the observed seasonal changes of column X_{CO2}. However, the daily photosynthetic drawdown is too low by a factor of > 4, suggesting models do not partition the respiration and uptake correctly.
- Seasonality of biogenic X_{CO2} and SIF is consistent with *in situ* tower results indicating leaf phenology (flushing) plays a key role at larger scales in the Amazon.

17

Tropospheric Methane

Tropical C storage uncertainty in climate-carbon model

 Land C-storage increases from enhanced photosynthesis and water use efficiency at higher CO_2 (β_{1T}) but decreases from higher soil and plant respiration rates with warming (γ_{LT}) . Coupled simulations

have a much larger uncertainty in Cstorage (330 GtC) than uncoupled ones.

$$\Delta C_{\rm LT} = \beta_{\rm LT} \Delta C_{\rm a} + \gamma_{\rm LT} \Delta T_{\rm T}$$

PM Cox et al. Nature (2013)

19

UNCLASSIFIED

Contemporary CO₂ variability used to evaluate γ_{LT}

•Data consistent with **uncoupled models** that show much smaller tropical carbon release than in **coupled models**

PM Cox et al. Nature (2013)

a

TCCON daily CO₂ drawdown – Wet versus Dry

How does process based prognostic CLM perform?

Dean Green, Gregor Surawicz, Vagner Castro, Norton Allen, J. F. Blavier & LANL ARM FIDO team.