


# Towards an operational observing system to monitor fossil CO<sub>2</sub> emissions

Y. Meijer<sup>(1)</sup>, P. Ciais<sup>(2)</sup>, M. Drinkwater<sup>(1)</sup>, P. Ingmann<sup>(1)</sup>, <u>A. Loescher<sup>(1)</sup></u>, B. Sierk<sup>(1)</sup>, and P. Silvestrin<sup>(1)</sup>

<sup>(1)</sup>ESA, Noordwijk, The Netherlands <sup>(2)</sup> LSCE, Paris, France

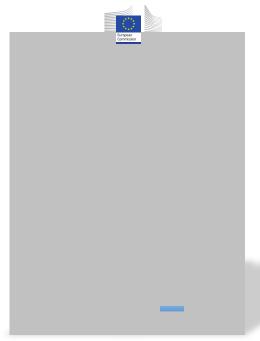
European Space Agency

#### "CO<sub>2</sub> report" Towards a European Operational Observing System to Monitor Fossil CO<sub>2</sub> Emissions



The report provides an implementation plan toward an independent European operational observing system, which would be a supporting tool to assess international climate commitments on  $CO_2$  emissions

Experts & authors:


- P. Ciais, D. Crisp, H. van Denier der Gon
- R. Engelen, M. Heimann, P. Rayner,
- G. Janssens-Maenhout, and M. Scholze



Report available via: <u>http://www.copernicus.eu/main/towards-european-</u> <u>operational-observing-system-monitor-fossil-co2-emissions</u>





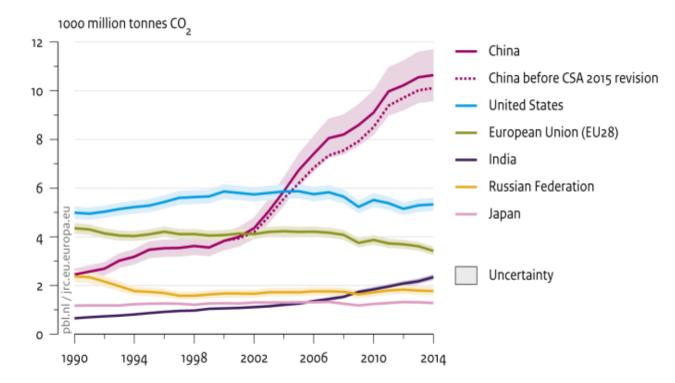


#### Questions addressed in CO<sub>2</sub> report



- 1. What are the **critical uncertainties** and limitations of **current inventories** of fossil CO2 emissions based on fuel use statistics?
- 2. How could inventories be improved using independent space-borne measurements of atmospheric CO2?
- 3. What are the **current capabilities** of space-borne and in-situ ground-based measurements of atmospheric CO2 in Europe and worldwide?
- 4. How should these **capabilities be optimized into an operational system** for independent monitoring of fossil CO2 emissions and for improving current estimates at the global, European and country scales?
- 5. What are the critical elements and a possible road map for setting up such a system enabling first pre-operational CO<sub>2</sub> emission quantification capacities around 2025 and full operational exploitation at the horizon of the 2030s?

## Critical uncertainties in CO<sub>2</sub> inventories


Emissions on the rise



Are CO<sub>2</sub> emissions still rising?

YES, but the trend is stalling

CO<sub>2</sub> emissions from fossil-fuel use and cement production in the top 5 emitting countries and the EU



Source: EDGAR 4.3 (JRC/PBL, 2015) (1970-2012; notably IEA 2014 and NBS 2015); FT2014 (2013-2014): BP 2015; GGFR 2015; USGS 2015; WSA 2015

European Space Agency

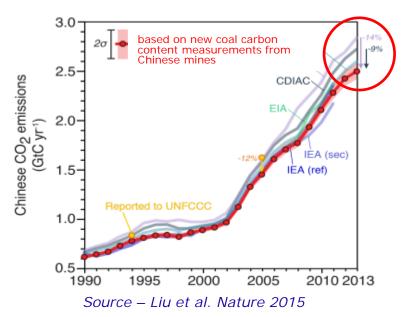
ESA UNCLASSIFIED – For Official Use

# Critical uncertainties Em in CO<sub>2</sub> inventories on

# Emission uncertainties on the rise



- During the last decade, emerging countries have become the largest emitters
- The global emissions uncertainty is increasing with time : we are losing our anchor
- No reliable information about spatial & temporal patterns


 $\rightarrow$  this is a limitation to mitigation policy

In Aug 2015, a study revised China's emission downwards by 14% based on new coal emission factors

*In Nov 2015, China's coal consumption statistics were re-evaluated upwards by 20%* 

*This illustrates the large uncertainty of emissions, which is critical to interpret emission reduction pledges* 

A 14% correction of China emissions translates into adjusting the global land sink by ~30% in the global budget of  $CO_2$  !

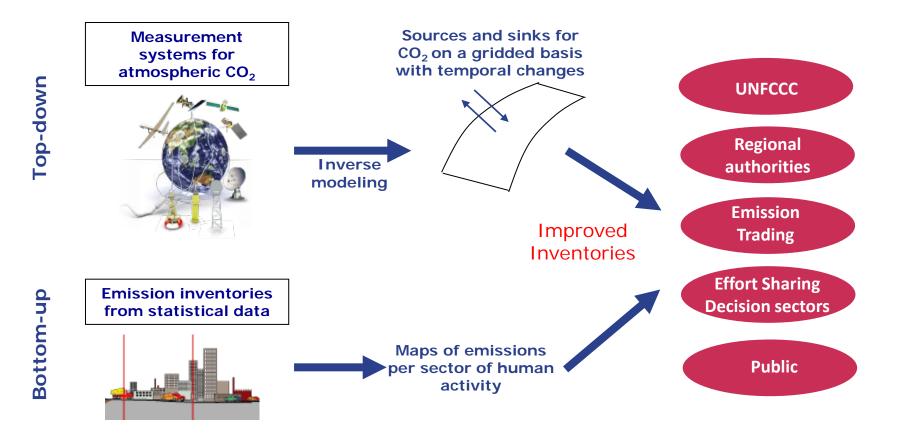


# Critical uncertainties in CO<sub>2</sub> inventories





- Current emission inventories are based on self-reported statistical data by the emitters themselves
- Despite efforts to improve inventories, global fossil CO<sub>2</sub> emissions information is becoming more uncertain


Recognized limitations of inventories :

- Difficult to independently verify since they require most of the available information to be compiled
- They are limited in scale, given the limited granularity of economic data
- They require considerable infrastructure and technical capacity
- As a result, their quality is highly variable between countries Current inventories seem to be not sufficient to quantify the effectiveness of climate policy

Fossil CO<sub>2</sub> emission monitoring | Slide 6

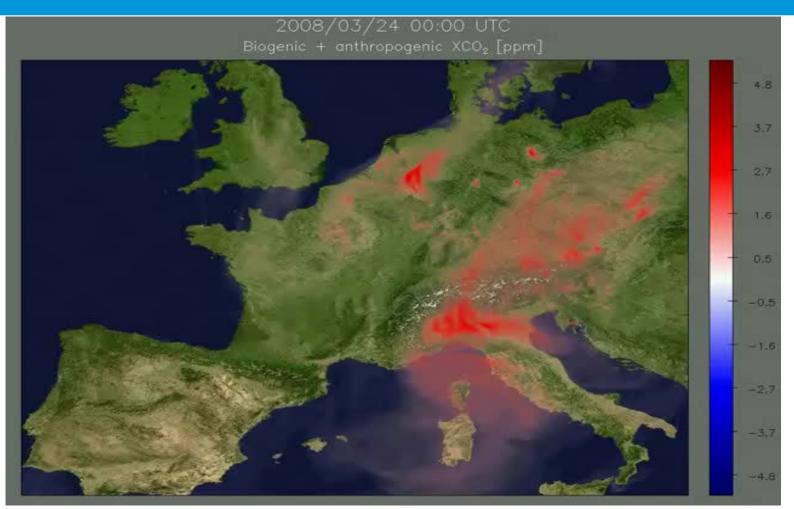
# The top-downImproving emissionatmospheric approachinventories





• CO<sub>2</sub> emissions of subnational governments / regions need also to be mapped within a regionally complete picture (covering all human activities)

Fossil CO<sub>2</sub> emission monitoring | Slide 7


ESA UNCLASSIFIED – For Official Use

European Space Agency

### The top-down approach requires high spatial resolution

# Simulation of CO<sub>2</sub> emission plumes





#### Source : D Brunner, EMPA COSMO model

Fossil CO<sub>2</sub> emission monitoring | Slide 8

European Space Agency

ESA UNCLASSIFIED - For Official Use



Independent quantification of fossil CO<sub>2</sub> emissions using inverse modeling and atmospheric measurements is feasible with current technology

#### Two complementary approaches :

 Dense sampling of emission hotspots, such as megacities, major industrial areas, and large power plants

#### $\rightarrow$ This can be achieved with satellites measuring column CO<sub>2</sub>

Separate the fossil CO<sub>2</sub> component from the natural fluxes at regional scale, by measurements of additional trace species, such as radiocarbon (<sup>14</sup>C in CO<sub>2</sub>) and carbon monoxide

 $\rightarrow$  This can be achieved in Europe by making <sup>14</sup>C measurements at existing CO<sub>2</sub> monitoring tall towers (ICOS and national in-situ networks)

#### → Need for increasing dense and spatial sampling of atmospheric CO<sub>2</sub> measurements to quantify emissions

Fossil  $CO_2$  emission monitoring | Slide 9

The pillars of an operational system



An **operational observation system** to monitor fossil fuel CO<sub>2</sub> emissions consists of **four pillars**:

- Bottom-up inventories; frequently updated and improved maps of emissions from
- 2. Satellite measurements of total column CO<sub>2</sub>
  - Dense sampling: imagery
  - High spatial resolution: sample size smaller than < 3 km
  - Individual measurement precision of < 1 ppm
  - Systematic errors < 0.5 ppm
  - Global coverage of emission hotspots
- 3. In-situ tall towers networks
  - Very high precision continuous CO<sub>2</sub> measurements
  - <sup>14</sup>C sampling
- 4. Inverse modeling with operational capabilities
  - High resolution atmospheric transport models
  - Fossil fuel data assimilation system built upon existing Copernicus capabilities

Fossil  $CO_2$  emission monitoring | Slide 10

### Space based measurement capabilities

#### **Space segment**



Specific measurements of atmospheric CO<sub>2</sub> from space are needed for fossil CO<sub>2</sub> emissions quantification

- Discussion with the EC has started (a Task-Force to iterate the requirements is in place)
- Around 2025, a pre-operational European carbon mission delivering column CO<sub>2</sub> at high resolution and accuracy/precision with imaging capability should be in place
- By ~2030 a fully operational system with an expanded space segment based on the four pillars identified in the CO<sub>2</sub> should be in place
- This system will need to be complemented by a set of carbon missions (European and non-European) to ensure the frequent detection, quantification and monitoring of emissions
- To ensure success broad international support will be key to exploit all available data (European and non European) to the best extend possible

Fossil  $CO_2$  emission monitoring | Slide 12

ESA UNCLASSIFIED – For Official Use



# **Roadmap to operational system**



ESA proposed to its member states a **generic roadmap** for the evolution of the Copernicus space component

CO<sub>2</sub> monitoring is in the top priority list and used as first case to explore implementation, see CO<sub>2</sub> Roadmap

ESA and the European Commission jointly established by nomination a **CO<sub>2</sub> Monitoring Task Force** of experts (Task A on space component)

The system requires a broad international support and in the task force involves other space agencies



Fossil  $CO_2$  emission monitoring | Slide 13

Annex 1a - CSC Evolution DRAFT CO2 Roadmap

|             | 2015                                                                                                     |               |
|-------------|----------------------------------------------------------------------------------------------------------|---------------|
| Oct.        | CO2 Report published by DG GROW                                                                          | COM           |
|             | 2016                                                                                                     |               |
| Feb.        | Nomination of Task Force of experts                                                                      | COM/ESA       |
| Jul/Sep     | Kick-off of EC/ESA End-to-end<br>Architecture Studies for CO <sub>2</sub> emissions<br>monitoring system | COM/ESA       |
| Apr. – Dec. | Draft CO <sub>2</sub> Mission MRD                                                                        | COM/ESA       |
|             | 2017                                                                                                     |               |
| Dec.        | Detailed technical requirements for the overall CO <sub>2</sub> System                                   | ESA/EUM/ECMWF |
|             | 2018                                                                                                     |               |
|             | Phase A/B1                                                                                               | ESA           |
|             | 2019                                                                                                     |               |
|             | Phase B2                                                                                                 | ESA           |
|             | 2020                                                                                                     |               |
|             | Instrument QM development                                                                                | ESA           |
|             | 2022                                                                                                     |               |
|             | Procurement of recurrent units of CO <sub>2</sub><br>Mission                                             | ESA           |
|             | 2024/2025                                                                                                |               |
| JanDec.     | First (Pre-) operational CO2 mission<br>launched                                                         | ESA           |
|             | 2030                                                                                                     |               |
| Nov.        | Constellation of operational CO2<br>missions launched                                                    | ESA           |





Task Force (Task A) will advise on the pre-operational implementation of a space component for a global "CO<sub>2</sub> Emissions Monitoring System"

First meeting scheduled on 11–12 July

| Name                    | Affiliation                                                                       |  |
|-------------------------|-----------------------------------------------------------------------------------|--|
| Hartmut BOESCH          | Dept. of Physics & Astronomy, Space Research Centre, University of Leicester, UK  |  |
| Antonio BOMBELLI        | CMCC - Euro-Mediterranean Centre for Climate Change, IT                           |  |
| Dominik BRUNNER         | EMPA, Swiss Federal Laboratories for Materials Science and Technology, CH         |  |
| Michael BUCHWITZ        | Institute of Environmental Physics (IUP), University of Bremen, DE                |  |
| Philippe CIAIS          | Laboratoire des Sciences du Climat et de l'Environment (LSCE), FR                 |  |
| Richard ENGELEN         | Chemical Aspects Section, Research Department, ECMWF, UK                          |  |
| Sander HOUWELING        | SRON/IMAU, NL                                                                     |  |
| Julia MARSHALL          | Max-Planck-Institute for Biogeochemistry, DE                                      |  |
| Marko SCHOLZE           | Dept. of Physical Geography & Ecosystem Science, Lund University, SE              |  |
| Greet JANSSENS-MAENHOUT | European Commission, Joint Research Centre, Institute for Environment and         |  |
|                         | Sustainability, IT                                                                |  |
| David CRISP             | Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), US |  |
| Masakatsu NAKAJIMA      | Japan Aerospace Exploration Agency (JAXA), JP                                     |  |
| Yves BUHLER             | EUMETSAT, DE                                                                      |  |



Fossil  $CO_2$  emission monitoring | Slide 14

#### Take home



- Limitations of current inventories to assess and support the effectiveness of local and national mitigation policies are evident
- Inverse modeling with dense atmospheric CO<sub>2</sub> measurements allows to improve fossil fuel CO<sub>2</sub> emissions knowledge
- **3**. Capabilities need to be developed within Copernicus to build the four pillars of an **operational** CO<sub>2</sub> emission **monitoring system by 2030**
- System should support countries in monitoring their efforts to reduce CO<sub>2</sub> emissions down to the scale of major cities
- 5. This system will require frequently updated bottom-up emission maps, an operational Fossil Fuel Data Assimilation System and adequate spacebased and in-situ CO<sub>2</sub> observations, being pre-operational with a first satellite CO<sub>2</sub> imagery mission launched around 2025
- This system should be part of the Copernicus program complemented by broad international cooperation

Fossil CO<sub>2</sub> emission monitoring | Slide 15