

Radiometric and spectral sizing of future CO₂ observing space missions

B. Sierk¹, J. Landgraf³, J. aan de Brugh³, J. Caron², A. Löscher¹, Y. Meijer², A. Butz⁴, J.-L. Bézy¹, R. Meynart¹

- ¹ European Space Agency (ESA)
- ² RHEA for ESA
- ³ Space Research Organisation of the Netherlands (SRON)
- ⁴ Karlsruhe Institute of Technology (KIT), Germany

The CarbonSat mission

The CarbonSat mission

- Candidate mission for ESA's Earth Explorer program (EE8)
- Phase A/B1 (feasibility and design) with two industrial consortia
- Mission goals
 - biogenic sources and sinks
 - anthropogenic sources (cities and power plants)
- High spatial sampling, wide swath imaging of XCO₂ and XCH₄
 - 6 km² (3km ACT x 2 km ALT) spatial samples, 240 km swath width
 - High single sounding precision and accuracy (3 ppm rms / 0.5 ppm bias)

Concept B

The CarbonSat mission

From CarbonSat to Copernicus mission

- The FLEX mission was selected as Earth Explorer 8
- CarbonSat instrument pre-development studies still on-going
- Serves as starting point for future European carbon monitoring system
 - Anthropogenic CO₂ emission as primary goal
 - High spatial resolution imaging of point sources (cities, power plants)
 - Global coverage at high temporal sampling
 - High single sounding precision and accuracy (1 ppm rms / 0.5 ppm bias)

Concept A

Spectral sizing of past and future missions

SNR and spectral resolution trade-off revisited

- CarbonSat was designed for low resolution / high SNR
- OCO-2 and MicroCarb (will) implement high resolution / low SNR

- Dark vegetation scenario (Albedo 0.05, SZA = 50°)
- XCO₂: 396 ppm

- Dark vegetation scenario (Albedo 0.05, SZA = 50°)
- XCO₂: 396 ppm

- Dark vegetation scenario (Albedo 0.05, SZA = 50°)
- XCO₂: 396 ppm

- Dark vegetation scenario (Albedo 0.05, SZA = 50°)
- XCO₂: 396 ppm + 400 ppm (concentration gradient in power plant plume)

- Dark vegetation scenario (Albedo 0.05, SZA = 50°)
- Delta XCO₂ (396 ppm 400 ppm), low res. and high res.

- Dark vegetation scenario (Albedo 0.05, SZA = 50°)
- Delta XCO₂ (396 ppm 400 ppm), low res. and high res. with noise

Spectral Sizing and systematic errors: Straylight

Impact of systematic errors

- Straylight is a major driver for instrument performance
- Found to be critical for CarbonSat •
 - Imaging mode with large radiometric contrast
 - Interpreted as contributor to bias
 - Drives cleanliness, smoothness of optical components

Diffuse SL kernel (Concept B)

Does the criticality depend on the spectral sizing ?

Optimizing spectral sizing

- ESA initiated a scientific support study
- Objective: Investigate the relative impact of various error sources for different spectral sizing points
 - Straylight
 - ISRF distortion
 - Polarisation sensitivity
 - Non-linearity
 - Diffuser features

Approach

1. Simulation of L1b measurements

- using results of CarbonSat instrument studies (SL kernels, Mueller matrices, non-linearity and speckle measurements)
- simulating a large ensemble of geophysical scenarios
- 3-4 spectral sizing configurations (high-low resolution/SNR)
- 2. Perform Level-2 retrievals for various spectral sizing configurations
- **3.** Compare performance in terms of accuracy and precision

Straylight Simulation Approach

1.) Simulation of a measurement over a contrast scene

- Half of the entrance slit is illuminated with bright scene (Albedo 0.4)
- The other half with dark clear-sky vegetation scene (Albedo 0.05)
- The error-free signal on the focal plane is computed

Straylight Simulation Approach

2.) Simulation of straylight

- The BSDF is derived from straylight simulations for CarbonSat studies
- A simplified straylight kernel is derived from the BSDF
- The straylight-affected signal is computed by 2-dimensional convolution with the kernel

Straylight Simulation Results: Level-0

Relative straylight error across the focal plane (% of local radiance):

Relative straylight error for L1b spectra 5 SSD from the transition:

Straylight Simulation Results: Level-1b

3.) Generation of L1b data

- The Level-1b radiance spectra are computed by binning across the swath
- 10 spatial pixels form one ACT spatial sample of 3 km width
- 80 ACT spatial samples (Field-of-Views)
- Correspond to 240 km swath width
- Large radiometric errors near the transition dark/bright in the swath center

Straylight Simulation Results: Level-2

4.) Level-2 retrieval for all Level-1b spectra

- RemoTeC algorithm at SRON
- 80 Field-of-Views across the swath (ACT spatial samples)
- Four spectral sizing configurations (instruments)
 - 1 CarbonSat LR and 2 HR configurations
 - OCO-2
- Retrieval of XCO₂ and XCH₄ with and without regularization

Conclusions

• ESA has initiated a study for verification of spectral sizing configurations

- In preparation for a future carbon monitoring system
- High spatial sampling, wide swath imaging of emission point sources
- Trade-off revisited in view of systematic instrumental errors
 - wide vs. narrow spectral bandwidth
 - low vs. high spectral resolution
 - high vs. low SNR

• First tests of straylight impact

- Simulation of L1b data for simple contrast scene
- Level-2 retrieval (without correction for straylight)
- Evaluation of bias performance
- Preliminary indication:
 - Low-resolution / high SNR CarbonSat configuration not more sensitive to straylight than high-resolution instruments

Outlook

- Extensive study will be kicked off in June/July
 - Space Research Organisation of the Netherlands (SRON)
 - Karlsruhe Institute of Technology (KIT), Germany
 - Institute of Environmental Physics (IUP), Bremen, Germany
 - University of Leicester, UK

• Simulation of various instrumental error sources

- Straylight
- Polarisation
- Diffuser speckles
- Detector non-linearity
- Large number of geophysical scenarios
 - Global clear-sky database (~ 10000)
 - Realistic aerosol/cloud scenes (Tropomi orbits, A-train data)
- Wide range of spectral sizing points for limited subset
- Conclusions to be expected by end 2016
- Will determine operation point of a future European carbon mission
- Suggestions welcome !