



# Updated Performance Simulations for a Space-Based CO<sub>2</sub> Lidar Mission

June 9, 2016

S. Randy Kawa, J. B. Abshire, X. Sun, J. Mao, A. Ramanathan

NASA Goddard Space Flight Center

Greenbelt, MD USA

- Motivation and Overview
- Mission Simulation
- Random Error Estimates
- Toward Level I Requirements
- Summary









#### Science Objectives:

- 1. Quantify <u>global distribution of atmospheric CO<sub>2</sub></u> on scales of weather models in the 2010-2020 era
- 2. Quantify global distribution of terrestrial and oceanic <u>sources and sinks</u> of CO<sub>2</sub> on 1° grids weekly
- 3. Provide a scientific <u>basis for future projections</u> of CO<sub>2</sub> sources and sinks through data-driven

# Space-based Lidar for Atmospheric CO<sub>2</sub>







→ Test sensitivity of inferred  $CO_2$  distributions to varying mission and instrument design parameters (Kawa et al., Tellus-B, 2010).



# **Orbit Sampling and Cloud Data**





- CALIPSO orbit defines sampling
- Model driven by MERRA meteorology provides realistic distribution of CO<sub>2</sub> (1° x 1.25° x 56 levels, hourly)
- Measured cloud plus aerosol optical depth used to attenuate laser radiances

   samples with optical depth > 1 are screened (~50% accepted)





# **Surface Reflectance, Backscatter**











-0.2

-0 1

 $\Delta$  Wavelength (nm)

- Laser transmitter in lab tests for TRL
- Verified in airborne simulator tests

0.2



# **Random Error Characteristics**





- Random errors from photon counting noise become near-negligible
- Other error sources now dominate

- Consider shorter nominal averaging times (50 Hz reported)
- Cloud slicing, partly cloudy scenes retrievals more feasible
- Take another look at detecting diurnal differences in XCO<sub>2</sub>





# **Global Error Distribution**



- Forward model transmission calculated for each profile sample.
- Most variability results from cloud attenuation.
- Average spectrum and candidate laser measurement wavelengths in red.

#### Simplified Retrieval:

XCO<sub>2</sub> error equals relative error in fitted optical depth plus uncorrelated error in surface pressure plus minor terms.







| Error Term                           | Current Form                                                                    | Next Level                                        |
|--------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|
| Random Error                         | f (cld + aerosol OD,<br>$\beta$ , CO <sub>2</sub> , $\lambda$ , instr.<br>spec) | ✓                                                 |
| Solar Background                     | f (SZA, instrument)                                                             | $\checkmark$                                      |
| Representation                       | (0.05 + 0.1)%                                                                   | Fine-scale model, a/c data                        |
| Surface<br>Pressure/Airmass          | 1.25 mbar                                                                       | f (met analyses)                                  |
| State Error (T,<br>H <sub>2</sub> O) | Incl. in surface<br>pressure error                                              | Impose $\delta T$ , $\delta H_2 O$ in 'retrieval' |
| Instrument Bias                      | none                                                                            | f (instrument,<br>measurement state)              |
| Spectroscopy                         | none                                                                            | Line shape, mixing,                               |



# **Design Point Error Estimate**



• Single-sample errors average 0.6 ppmv for this instrument configuration (10-s avg).

• Exceeds ASCENDS measurement requirements.



## **Design Point Error Estimate**



• Single-sample errors average ~0.8 ppmv for this instrument configuration (1s avg).

• Meets ASCENDS requirements with enhanced spatial resolution.



### Sample Coverage









• ASCENDS will greatly improve sampling at high latitudes and in cloudy regions

- Total number of samples and random error levels can be comparable to OCO-2
- Expect reduced bias errors





# **Vertical Weighting Functions**





- Minimum variance OD fitting shifts WF higher relative to  $2-\lambda$  solution.
- Optimize wavelength sample distribution/weighting to enhance WF.
- Optimize for 2 pieces of info in vertical?





- Updated instrument model and pulsed multi-wavelength fitting approach for ASCENDS simulator produce much-reduced random error estimates
  - other error sources dominate photon measurement uncertainty
  - current instrument design point exceeds ASCENDS performance requirements from Decadal Survey
  - revisit L1 measurement requirements

#### Next Steps

- Evaluate retrieval errors
- Incorporate bias distributions
- Include errors in knowledge of atmospheric state
- Test in inverse model(s) for source/sink uncertainties
  - including cloud-top retrieval samples





- ASCENDS Ad Hoc Science Definition Team
- E. Browell, M. Vaughan, NASA LaRC
- R. Menzies, D. Crisp, G. Spiers, NASA JPL
- H. Riris, G. Allan, Y. Liu, NASA GSFC
- G. Ehret, DLR
- K. Jucks, NASA HQ