

SCIENTIFIC AND TECHNICAL INSIGHT INTO MICROCARB

International Working Group on Green House Gazes Monitoring from Space IWGGMS-12

Denis Jouglet, D. Pradines, F. Buisson, V. Pascal, P. Lafrique (CNES) LSCE, LMD, LATMOS NOVELTIS, THALES SERVICE, ACRI

Kyoto Japan – June 7-9, 2016

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

• SCIENTIFIC TOOLS

• **REQUIREMENTS AND PERFORMANCES**

cnes

Scientific numerical tools

LSCE

→Use for instrumental design
→Preparation for ground segment

L1 RADIATIVE TRANSFER CODE "4AOP"

- Developed by LMD & NOVELTIS, operated by CNES for MicroCarb
- Computes radiance spectra and jacobians
- LUT for cross sections (atlas), built from the GEISA database
- Diffusion (Rayleigh, aerosols): DISORT, LIDORT, VLIDORT
- Validated by LMD with TCCON and GOSAT
- Recent and on-going developments for 4AOP:
 - Now works from NIR to TIR, extension to UV/VIS
 - Optimisation of the code (interfaces, parallelisation)
 - Diffusion acceleration
 - Photosynthesis fluorescence

Atlas temperature discretisation (black) and user temperature profile examples

L1 -> L2 INVERSION TOOL « 4ARTIC » THALES

- Prototyped and operated by CNES, developed by Thalès Service, scientific support from LSCE & LMD
- Inversion of the radiance spectra to retrieve the geophysical state

Measured
$$y = f(x) + \varepsilon \approx Kx + \varepsilon$$
 with $K = \frac{Oy}{\partial x}$
spectrum (L1) Geophysical state (L2) Jacobian matrix

• Based on Rodgers 2000: optimal estimation with gaussian probability functions

Fast performance estimation mode:

Bias transport by gain matrix G →XCO2 bias (ppmv), column integrated

Retrieval mode: by iterations, from a priori xa:

 $x_{i+1} = x_a + \left(S_a^{-1} + K_i^T S_{\varepsilon}^{-1} K_i\right)^{-1} K_i^T S_{\varepsilon}^{-1} \left[\left(y - F(x_i)\right) + K_i (x_i - x_a) \right]$

L1 -> L2 INVERSION TOOL « 4ARTIC »

- State vector:
 - 19 vertical levels of CO2 and H2O + Psurf + albedo (& slope) per band (+ fluorescence)
 - + Retrieval may include estimation of instrumental unknowns: radiometric offset, shift / width of ISRF
- Aerosol retrieval baseline:
 - Developed by Vanessa Sherlock & NOVELTIS (CNES funding)
 - Simplified explicite scheme based on 3 parameters [In(AOD(σ₀)), k, z_{aero}] retrieved in the state vector
 - + AOD(σ) = AOD(σ_0)(σ/σ_0)^k
 - Gaussian vertical distribution (from Butz) with mean altitude z_{aero}
 - NB: other algorithms also under study

- Dedicated on-going study to test 4ARTIC with the OCO-2 L1B dataset
 - Comparison to TCCON, to L2 OCO-2
 - A priori state from OCO-2 data, and from external data:
 - » Psurf, H2O and T profiles from ECMWF
 - » Aerosol AOT at different wavelength from CAMS
 - » Altimetry from SRTM

L2 -> L4 SIMULATOR « SIMGES »

- Developed and operated by LSCE / NOVELTIS, funded by CNES
- Based on the inversion of a transport model including surface sinks and sources

∂/∂t **(**ρ **C)**

CO2 VMR from MicroCarb and other sources (sat, ground)

Modèle de transport Atmosphérique (LMDZ)

Resolution 3.75° x 2.5° (418kmx280km) x19z x 6h

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEME!

Sources/puits de CO2 modélisés par région

NOVELTIS

500x500 km² regions Week temporal scale

- Flux and performances by optimal estimation
- Provides sensitivity studies:
 - Impact of L2 performance (random error and biases)
 - Scan mode
 - Size & number of FOVs
 - Vertical sensitivity of CO2 VMR

SCIENTIFIC TOOLS

• **REQUIREMENTS AND PERFORMANCES**

cnes

MICROCARB NOMINAL SPECTRAL BANDS

INSTRUMENTAL REQUIREMENTS

Main contributor to XCO2 random error: SNR, band width, spectral resolution

- » A min value is specified for each
- An empirical L2 function let industry determine the actual triplet (function created from a large set of 4ARTIC simulations)

Parameter	Value
Wavelength	0.76 μm, 1.61 μm, 2.06 μm
Band widths	30 to 90 cm ⁻¹
Resolution (I/DI)	25 000
SNR	200 to 500 (all bands)
FOV size	3 FOV x 4.5 km x 9 km

Instrumental artifacts:

- If direct impact at L1: equivalent pseudo-noise >1000 (G), >500 (T)
- If impact at L2: Pseudo-noise & global bias < 0.4ppmv, Regional bias < 0.1ppmv(G), < 0.2ppmv (T)

PERFORMANCE BUDGET

Actual performance budget

+ 4ARTIC transfers each L1 performance at L2 as pseudo-noise (\hat{s}) or bias (b_x)

- » We can conclude on the acceptance of potential non-conformities
- A complete performance budget at L2 will be performed
 - » Noise and pseudo-noise (random error) : summed at variance level
 - » Regional biases : We have to characterize their spatial correlation
- End-to-end orbital simulations at L2 with 4ARTIC
 - Give the regional pattern of instrumental defects
 - Characterize the geophysical biases (aerosols, air mass, albedo, Psurf, etc.)
- Impact of the L2 random errors and biases on L4 with SIMGES

Bias pattern for an instrumental artifact

11

INSTRUMENTAL DESIGN

- The instrumental design has evolved to be more compact
- On going instrument detailed definition and performance budget
- We now have 3 FOV (swath 13.5km), each ~40 km2
- New: all spectral bands now acquired on a unique NGP detector
 - ➔ Possibility to add new spectral bands (1 or 2 additional bands)

 \bigcirc

AIREUS

MICROCARB POTENTIAL ADDITIONAL BANDS

B6

incomplete combustions)

5

- capabilities and scientific interest
- → See dedicated poster 53 by Jouglet et al.

CONCLUSIONS

- The MicroCarb project has a complete set of numerical tools (4AOP, instrument simulator, 4ARTIC, SIMGES) to link L1, L2 and L4, and transfer requirements and performances
- CNES is able to operate the complete chain to master the mission overall performances
- These tools are used to:
 - Specify and adjust the design of the instrument
 - Design the ground segment
 - Provide a complete performance budget
- With the coming performances of the new instrumental concept, end-toend simulations are planned to consolidate the performance budget on realistic orbits

Laboratoire des sciences du climat & de l'environnemen

