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Inverse modeling of atmospheric CO2 holds the promise 
of providing better estimates of regional sources and 
sinks of CO2. However, discrepancies in the 
atmospheric transport models employed in these 
analyses have posed a challenge to obtaining robust 
estimates of the sources and sinks. Here we use a weak 
constraint four-dimensional variational (4D-Var) data 
assimilation scheme to assimilate atmospheric CO2 data 
from the Orbiting Carbon Observatory (OCO-2) to 
optimize the distribution of atmospheric CO2 in the 
GEOS-Chem chemical transport model. We investigate 
the adjustments to the CO2 distribution produced by the 
weak constraint 4D-Var scheme to characterize 
transport errors in GEOS-Chem.
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 2. Model and Data

 3. Data Assimilation Approach

• We use version v35j of the GEOS-Chem adjoint model, driven by 
GEOS-FP meteorological fields, at a horizontal resolution of  
4° x 5°. 

• The configuration of the CO2 simulation is as described in Byrne 
et al. (2018) 

• We use OCO-2 XCO2 data (version 9), preprocessed to 10s 
means by D. Baker. 

• All modes of the OCO-2 observations (nadir land, glint land, and 
ocean glint) are assimilated.

 4. Results
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Figure 1. A priori XCO2 bias (left), SC 4D-Var residual bias (middle), and WC 4D-Var 
residual bias (right). The bias is calculated as model − observations and is given in ppm.

• The SC assimilation reduced the XCO2 biases over the continental regions, but 
large residual biases remain over the oceans in the extratropical NH. 

• The WC assimilation successfully removed the a priori XCO2 bias and reduced 
the standard deviation by a factor of 2 (Table 1).

Mean (ppm) StDev (ppm)
A priori 0.73 1.99
SC 4D-Var 0.27 1.58
WC 4D-Var -0.02 1.01

Table 1. Mean and standard deviation of the model − 
observation differences.

Mean forcing terms in August 2016

Figure 2. Monthly mean WC forcing (η) in August 2016, 
vertically averaged from the surface to 11 km.

Figure 3. Altitude-longitude cross section of the monthly 
mean WC forcing, averaged between 40°N – 55°N.
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Figure 4. Zonal mean WC forcing for August 2016.

• The large-scale forcing pattern is consistent 
with the a priori bias, with negative forcing 
where there are large positive biases, such as 
over South America, central Africa, and the 
northwestern Atlantic and Pacific oceans.

• The forcing increased CO2 in the lower 
troposphere over North America and 
East Asia, while decreasing it in the 
upper troposphere and downwind of the 
continental regions.

• The zonal mean forcing has a dipole 
structure poleward of 45°N, consistent 
with the vertical transport bias identified 
by Schuh et al. (2019).
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A posteriori CO2 in August 2016 at 3 km (model 
level 19) for the SC 4D-Var assimilation
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Figure 5. Monthly mean a posteriori CO2 at 7 km for the SC (top left) and WC (top right) assimilation, and the absolute 
(bottom left) and percent (bottom right) differences between the a posteriori fields.

Figure 6. Monthly mean a posteriori CO2 at 3 km for the SC (top left) and WC (top right) assimilation, and the absolute 
(bottom left) and percent (bottom right) differences between the a posteriori fields.

• A prominent feature in the upper 
troposphere in the WC assimilation is the 
CO2 maximum over the Middle East, 
which is similar to the observed Middle 
East ozone maximum (Li et al., 2001; 
Liu et al. 2009). 

• The Middle East ozone maximum is 
linked to the Arabian anticyclone and 
descent over the Mediterranean and 
central Asia, where the WC assimilation 
produces a reduction in CO2. 

• Discrepancies in capturing this transport 
feature could have implications for 
inferred European and North African 
fluxes.

• In the lower troposphere the WC 
assimilation produces lower CO2 
abundances along the storm tracks over 
the northern Atlantic and Pacific oceans, 
which could be associated with 
discrepancies in synoptic transport in the 
model.
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 5. Summary  6. References
• The WC 4D-Var scheme provides a means of mitigating 

systematic errors in the assimilation of XCO2 data. 

• The estimated WC forcing terms suggest the presence of 
errors associate with summertime synoptic transport in the 
extratropical northern hemisphere.

In SC 4D-Var we assume that the model (M) is perfect in evolving 
the model state (x) from time i to i+1

Strong Constraint (SC) 4D-Var

Here p represents the model parameters (i.e., the CO2 fluxes). The 
SC 4D-Var cost function is then given by

where y are the observations, H is the observation operator, R is the 
observation error covariance matrix, and Bx and Bp are the a priori 
error covariance matrices.

Weak Constraint (WC) 4D-Var

In WC 4D-Var we account for errors (η) in the model as follows:

where η are the forcing terms that capture the errors. We augment the 
cost function with an additional term to solve for these errors:

Experiments

• We assimilate OCO-2 data from 1 July – 30 September 2016 to: 

1. solve for monthly mean fluxes using the SC approach;  

2. solve for the CO2 state and the forcing terms (only between 
66°S – 66°N) using the WC approach. 

• The model is spun up by assimilating OCO-2 data using the SC 
4D-Var from September 2014 to September 2015, and then by 
running it without assimilation from 1 June 2015 to 1 July 2016 to 
generate initial conditions for 1 July 2016 (the beginning of the 
analysis period). 

• Here we focus only on the results for August 2016, the middle of 
the assimilation period.
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