Improvement and application of PPDF-S method for retrieving XCO₂ over aerosol dense areas

<u>Chisa Iwasaki¹ (c_iwa@aori.u-tokyo.ac.jp), Ryoichi Imasu¹, Bril Andrey², Sergey Oshchepkov², </u> Yukio Yoshida³, Tatsuya Yokota^{3, 4}, Vyacheslav Zakharov^{5,6}, Konstantin Gribanov⁵, Nikita Rokotyan⁵

- Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Kashiwa, Japan
- Center for Optical Remote Sensing, Institute of Physics of National Academy of Sciences of Belarus (IPNASB) Minsk, Belarus 2.
- National Institute for Environmental Studies (NIES), Tsukuba, Japan 3.
- Department of Information Networking for Innovation and Design, Faculty of Information Networking for Innovation and Design, Toyo University, Tokyo, Japan
- Laboratory of Climate and Environmental Physics, Ural Federal University, Yekaterinburg, Russia 5.
- Institute of Mathematics and Mechanics, Yekaterinburg, Russia

1. Introduction

• GOSAT

Greenhouse gases Observing SATellite (GOSAT) was launched in 23 January 2009 to measure atmospheric carbon dioxide (CO_2) and methane (CH_4) in the global scale. GOSAT measures solar radiation backscattered by the surface or atmosphere of the earth in Short-Wavelength InfraRed (SWIR) region, and column averaged concentrations of carbon dioxide (XCO₂) and methane (XCH_4) are retrived from the measured radiation.

•PPDF-S retrieval method

 $I(k) = I_0 T(k) = I_0 \int_0^\infty \exp(-kL) P(L) dL \left(\int_0^\infty P(L) dL = 1\right)$ (Bennartz and Preusker., 2006)

PPDF-S retrieval method (Oshchepkov et al., 2013)

PPDF parameters

- h: altitude of cloud/aerosol layer
- α : the relative reflection of the cloud/aerosol layer
- ρ : the mean path length under the cloud/aerosol layer
- γ : an adjustment parameter

 $T_{eff} = \alpha_U T_3 + (1 - \alpha_U) T_{12}^U T_L T_3$

 $T_{12}^{U} = exp[-C_{\mu}(1+\delta_{U})\tau_{12}]$ $T_L = (1 - \alpha_L) \exp\left[-C_{\mu}\tau_L\delta_L\right] + \alpha_L \exp\left[+C_{\mu}\tau_L\right]$

5. Application to Biomass Burning Area in Western Siberia

• Analysis area and period

- Area: Selected Western Siberia area (45-65° N latitude, 30-75° E longitude; Western Siberia is a large biomass burnining area)
- **XCO**₂ newly retrieved after the optimization

Period: The summer (June–August) of 2013 (numerous fires and smoke plumes emitted from biomass burning were detected using a MODerate resolution Imaging Spectroradiometer (MODIS))

The amount of data retrieved using the PPDF-S method increased by about 70%. In

15th International Workshop on Greenhouse Gas **Measurements from Space** June 3 (Mon) – 5 (Wed), 2019 Sapporo, Japan

2. Study purposes

- To improve the PPDF-S algorithm and to tune its parameters under high aerosol conditions, as well as to evaluate the retrieval performance of the method through simulation studies
- 2 To apply the improved PPDF-S algorithm and tuned parameters are applied to analyses of GOSAT data observed over Western Siberia during the biomass burning season

3. Study method

some cases, XCO_2 can be retrieved by the optimized method even over smoke from biomass burning.

• Identification of atmospheric aerosol types by PPDF parameters

Land cover type: 0, water; 1, evergreen needleleaf forest; 2, evergreen broadleaf forest; 3, deciduous needleleaf forest; 4, deciduous broadleaf forest; 5, mixed forest; 6, closed shrublands; 7, open shrublands; 8, woody savanna; 9, savanna; 10, grasslands; 11, permanent wetlands; 12, croplands; 13, urban and built-up areas; 14, cropland/natural; 15, ³ snow and ice; 16, barren or sparsely vegetated areas; 17, water bodies; and 18, tundra.

Its slope and absolute values are almost identical to those for the Soot-type aerosols in the simulation. \rightarrow Soot aerosols were included in the atmosphere over the target area during the analysis period.

The $\alpha_a - \alpha_a / \rho_a$ chart presents the possibility of identifying atmospheric aerosol types.

5. Further improved PPDF-S retrieval algorithm considering of the difference of light properties between aerosol types

Large XCO₂ bias for Dustlike

> The derived XCO₂ in the first step of the iterative calculation to minimize the cost function J(x) in the PPDF-S retrieval is

Model, Falametel	Details
Multiple scattering radiative transfer model	Polarization System for Transfer of Atmospheric Radiation3 (Pstar3)
Solar Irradiance Model	Band 1: Kurucz's model / Bands 2, 3: Toon's model
Zenith angle	Solar: 30° /Satellite: 0°
Surface albedo	0.05–0.50 (Bands 1, 2, 3)
Surface pressure	Grid Pointed Value (GPV) data of middle latitude summer from Japan Meteorological Agency (JMA)
Temperature and pressure profile	
Water vapor (H_2O) profile	
Carbon dioxide (CO ₂) profile	390 ppm in all layers
Aerosol types	Dust-like Urban, Rural, Soot (volume mixing ratio is given at 0–2 km)
Aerosol Optical Thickness (AOT)	0.05-1.0
Gas absorption	Line-By-Line (LBL) calculation using HIgh resolution TRANsmission molecular absorption database (HITRAN) 2004
Instrumental Line Shape Function (ILSF)	Ver. 2011 provided by NIES

4. Simulation studies

• XCO₂ bias for various surface albedos and AOTs

Information of CO₂, aerosols and carbon monoxide (CO), which is newly observed by GOSAT-2 using the algorithm are expected to contribute to a better capability of distinguishing anthropogenic CO₂ emissions.

6. Conclusions

- In the improved version of the PPDF-S retrieval methods, the constraint of a PPDF parameter that represents the light reflectance effect by aerosols (α_a) was optimized based on simulation studies.
- The optimization enabled to retrieve stable CO_2 profile under atmosphere including aerosols under the simulations. In the application of the optimized PPDF-S method for analysis of GOSAT

- closest to the true value for Dust-like aerosols.
- Negative XCO₂ bias for Soot It can result from underestimation of the effects of a shortened light-path length
 - on the PPDF-S retrieval. Soot effect... Light scattering + Light absorption
 - \rightarrow A larger a priori value of α_a than the original value can represent the shortened lightpath length and can reduce the XCO_2 bias.

