

<u>Denis Jouglet</u>¹, Pierre Lafrique¹, Christelle Pittet¹, Charlotte Revel¹, Bruno Vidal¹, Leslie David², François-Marie Bréon², François Buisson¹, Didier Pradines¹

1 - Centre National d'Etudes Spatiales – Toulouse - France 2 - Laboratoire des Sciences du Climat et de l'Environnement – France

Ifakara

Morogoro

THE MICROCARB INSTRUMENT

- Instantaneous slit projection : 0.64 km x 13.5km, split in 3 IFOV ACT
- Temporal integration of 1.3s : 3 footprints (FOV) of 4.5 km * 9 km ~40 km2
- 4 spectral bands : 0.76 μm O2, 1.61 μm CO2, 2.03 CO2 & new 1.27 μm O2
- Only 1 telescope, 1 spectrometer, 1 grating, 1 detector

L1A SPECTROMETER PRODUCTS (1/2)

Calibrated data at detector level (pixels)

- All L0 matrix pixels are downloaded
- L1A neither delivered nor archived (too large)
- Radiometric calibration:

 $L1A = A * gij * f_{NL}(L0 - dark)$

- Dark removal (daily measurements of the shutter)
- Non-linearity correction f_{NL} (from ground characterization)
- Relative gains gij correction (from monthly lamp measurements)
- Absolute gain A (from monthly solar acquisitions)
- 2D correction for straylight
- 2D spike detection

L1A SPECTROMETER PRODUCTS (2/2)

- Spectral calibration:
 - Dispersion law

(from monthly solar acquisition and correction for Satellite Doppler)

ISRF at pixel level

 \rightarrow Combination of ground characterization with the information on ALT non-uniformity from intermediate readings (14 readings of the detector during integration time for a few continuum channels)

Integrated difference between uniform and non-uniform ISRF: 2.2%

L1B SPECTROMETER PRODUCTS

Calibrated spectra at FOV (after binning)

- Binning in 3 FOV
 - Correction for potential smile and keystone
 - Binning of pixels in 3 FOV (29 pixels / FOV)
 - Binning of ISRFs in 3 FOV (29 ISRF / FOV)
 - ➔ An updated ISRF is given for each channel of each FOV

Geometric model of FOV

- Coordinates of each vertex of each IFOV + center
- FOV spatial spread function
- Uses orbitography and attitude

L1C SPECTROMETER PRODUCTS

Calibrated spectra for each FOV including corrections from geophysical data

- L1C processing (experimental) to reach the best L1 performance so as to reduce L2 regional biases
 - Geolocation refinement by correlation of the imager with Sentinel 2
 - → Increase the quality of surface pressure and albedo priors
 - Creation of a 4AOP polarized theoretical spectrum
 - » Same priors as L2
 - Correction of dispersion law by correlation with the theoretical spectrum
 - → Corrects any instrumental spectral defect, rather than in the L2 processor
 - Correction of residual instrumental polarization with the theoretical spectrum and the Mueller matrix of the instrument projected in the same frame
 - » MicroCarb has a low polarization rate (Glint: 0.2%, Nadir : <1%) thanks to a scrambler
 - » This rate is still high enough to induce regional biases
 - » Most part of the natural polarization is known : Rayleigh, glint \rightarrow easy to correct

→ This methodology reduces the L2 ground segment sizing by avoiding polarized computations with iterations

L1C SPECTROMETER PRODUCTS

- Computation of Intra-FOV Pixels (PIF)
 - Using the intermediate readings and the 29 ACT pixels / FOV in ~200 channels (continuum + lines), we can build sub-FOV maps of some geophysical parameters
 - Albedo in 4 bands (+ imager)
 - Ice, vegetation (NDVI)
 - Thick clouds (see next slides)

L1C EMBEDDED CLOUD DETECTION

- 1st filter for thick cloud detection : very rough
 - » Threshold on the radiometry of the imager (mean reflectance of MODIS + margin)

- 2nd filter for thick cloud detection
 - » Pixel to pixel comparison of the imager with a clear sky S2 image climatology

L1C CLOUD DETECTION : FINAL INDEX

- Comparison of prior and estimated surface pressure at FOV level (high SNR)
- Cloud intra-FOV maps. For each PIF:
 - » Estimation of surface pressure from a few O2 lines @ 0.76µm (with Rayleigh but no aerosols)
 - » Computation of prior surface pressure from ECMWF + Digital Elevation Model)
- » Difference between both enlights clouds (even with the PIF low SNR)

- Same work may be done with H2O lines @ 2.04 μm (under evaluation)
- O2 absorption lines of multi-reading used for Psurf retrieval

- » More sensitive close to the surface
- Albedo intra-FOV maps
 - » Difference between MicroCarb and S2 albedo enlights clouds
- → All this information is combined to provide a cloud contamination index

L2 PRE-FILTER

- The beginning of mission will focus on the easiest scenes, and progressively increase the situations
- The filter have to be refined
- Pre-filtering :
 - Remove SZA > 75°
 - Remove lower SNRs / seas
 - Remove highly heterogeneous scenes
 - Remove thick cloud contaminated scenes
 - Remove aerosol loaded scenes (AOD>0.3) from CAMS index

L1 -> L2 INVERSION TOOL : 4ARTIC

• Inversion of the radiance spectra to retrieve the geophysical state Measured $y = f(x) + \varepsilon \approx Kx + \varepsilon$ with $K = \frac{\partial y}{\partial x}$ Spectrum (L1) Geophysical state vector (L2) ∂x Jacobian matrix

Based on Rodgers 2000: optimal estimation with gaussian probability functions

• Iterations for non-linearity:
$$x_{i+1} = x_a + \left(S_a^{-1} + K_i^T S_\varepsilon^{-1} K_i\right)^{-1} K_i^T S_\varepsilon^{-1} \left[\left(y - F(x_i)\right) + K_i \left(x_i - x_a\right)\right]$$

- State vector a priori Noise covariance Prior state vector
 Gauss-Newton or Levenberg-Marquardt
 Stop criteria based on slight evolution of chi2 & slight evolution of state vector
- Radiative transfer (K & spectra) computed with 4AOP
 - Pre-computed LUT of cross-sections, spectroscopy from GEISA
 - Diffusion from LIDORT, accelerated with Low-Stream Interpolation (O'Dell 2011)
 - Our RT speed has still to improve (not at the state of the art)
 - Diffusion with SOS under progress

4ARTIC MAIN HYPOTHESIS

State vector:

19 layers of CO2 and H2O + Psurf + albedo (& slope) per band, fluorescence, airglow, aerosols
 These will be delivered as primary or secundary products

May include the retrieval of instrumental unknowns (radiometric offset, spectral shift)

- Aerosol / thin clouds retrieval baseline:
 - + 3 parameters retrieved in the state vector [AOD(σ_0), k, z_{aero}]
 - + Angström coefficient : AOD(σ) = AOD(σ_0)(σ/σ_0)^k
 - Gaussian vertical distribution with mean altitude z_{aero}, decreasing width with z_{aero} (Butz et al. 2009)
 - → Retrieval eased by the 1.27 µm O2 band
 - Single Scattering Albedo = 1
 - Henyey-Greenstein phase function with g=0.8

Priors:

- » Psurf, H2O and T profiles from ECMWF
- » Aerosol AOT at different wavelengths, vertical profiles and aerosol main type from CAMS
- » Altimetry from Planet Observer
- » CO2 from CAMS
- » Albedo from Sentinel 2 L2 synthesis
- » Airglow from LATMOS climatology

INVERSION OF OCO-2 L1B WITH 4ARTIC

4ARTIC is currently tested with the OCO-2 L1B B9

- Most favorable conditions:
 - Work with TARGET data over TCCON
 - + Clear sky, same prior and a priori covariances as OCO-2, no aerosol retrieval

Statistics on 2400 spectra (courtesy of Leslie David, LSCE) :

	XCO2 (ppm)	Psurf (hPa)	XH2O (ppm)
4ARTIC - TCCON	-0.67 +/- 2.03 (0.51%)	1.42 +/- 4.43 (0.45%)	-33.03 +/- 153.27 (6.19%)
ACOS (raw) - TCCON	-2.23 +/- 1.80 (0.45%)	-0.43 +/- 3.23 (0.33%)	112.74 +/- 182.37 (7.37%)

- Overall biases are low
- Overall standard deviation of the same order of magnitude as ACOS
- Continued work:
 - Understanding of residuals
 - Aerosol loaded scenes
 - Glint observations
 - Own priors, application of some L1 processings

CONCLUSIONS

- MicroCarb main innovations :
 - ISRF knowledge in heterogeneous scenes
 - + L1C with refined geolocation, spectral law and polarization impact
 - Intra-FOV information (a few channels) gives access to albedo, ice, NDVI, clouds
 - Cloud detection: based on imager and intra-FOV pixels
 - 1.27 µm band : better assessment of the aerosols (Angström coefficient), less sensitive to spectroscopy errors, same vertical sensitivity to aerosols as wCO2 + sCO2
- A complete chain of processing for L1 & L2 (& L3) is now specified
 - Most critical parts are prototyped
 - Testing under going for 4ARTIC, to come for other parts
 - Ground segment development starts next september
- Format of products : as similar as possible to OCO-2
 - → To ease the use of the MicroCarb data by the community
- A SIF product will also be computed by a pre-processor provided by UoL (Hartmut Boesch & Dongxu Yang)