

GEOSTATIONARY CARBON CYCLE OBSERVATORY

GeoCarb Mission Update

Berrien Moore III

GeoCarb Science Time Weeting – June 2, 2019

The GeoCarb Mission is designed to collect observations of the column averaged concentrations of carbon dioxide (CO₂), methane (CH₄), and carbon monoxide (CO), and solar induced fluorescence (SIF) from geostationary orbit (GEO) at a spatial resolution of 5-10 km over the Americas between 50° North and 50° South Latitudes as a hosted payload on a commercial communication satellite.

The Goal of the GeoCarb Mission is to provide observations and demonstrate methods to realize a transformational advance in our scientific understanding of the global carbon cycle.

- The ratio of CO₂ fossil source to biotic sink for CONUS is ~4:1
- 2. Variation in productivity controls spatial patterns of terrestrial sinks
- 3. Amazonian ecosystems are a large (~0.5-1.0 GtC/y) net sink for CO₂
- 4. Larger cities emit less CO₂ emission per capita than smaller ones
- 5. Amazonian ecosystems are a large (~50-100 MtC) net source for CH_4
- -6. The CONUS methane emissions are a factor of 1.6 \pm 0.3 larger than in EDGAR and EPA databases

GeoCarb aims to fundamentally advance our understanding of how the carbon cycle behaves on regional scales.

Mission

hresholc

Instrument Overview

Mexico City: OCO-2 and GeoCarb

A Day in the Life of GeoCarb

Simplified Instrument Overview

Instrument Design Changes

- Based on analyses and trades, the following changes were made to the Baseline Instrument at PDR:
 - Modified ISS
 - Image Stabilization System (ISS) modified to use scan mirror fed by star tracker rather than active mirror fed by IMU
 - Removed Calibration Drum Assembly
 - Removal of cal drum mechanism and structure
 - Reduced Optical Aperture for system
 - Reduced optic substrate size of optics (varies by optic)
 - Remove SHEB
 - Use mechanical thermostats for survival heaters
 - Change from PID thermal control
 - Reduction in FSW complexity
 - Removed FPA thermal sensor
 - · Redundant sensor, removes wires, reduces parasitics
 - Removed redundant power harness to S/C
 - SES agrees with minimal impact
 - In addition, the above changes allowed for electronics box reductions:
 - Combination of Mech 2 and Bridge board
 - Removal of 1 and ¹/₂ boards: Mech 2 and PZT driver circuits
 - Allowed for reduction of one whole row of boards (slots)

Ge

Simplified Instrument

- Optical redesign: reduction of SNR from smaller aperture area - <u>doubled stare time to meet SNR reqts</u>
 - SNR has margin in all channels, despite the presence of increased noise from thermal glow
 - Areal coverage rate retained by removal of double sampling
- Removal of Secondary Solar Calibration Drum: redundancy to assess changes in primary diffuser – <u>already planned</u> <u>lunar observations will be sufficient</u>
 - Lunar observations will be used to assess changes in the calibration over time. This methodology has been demonstrated by OCO-2.
 Working with lunar cal experts to adapt the OCO-2 approach for GeoCarb sampling
- Removal of IMU: expected pointing knowledge is reduced by ~0.1km, but it <u>still meets MDRA requirements</u>

We meet all Level 1 requirements and satisfy the mission hypotheses with the Replanned Project, though with some reduced margin

Instrument Overview

Host Spacecraft

- Working with SES to ensure maximum compatibility of GeoCarb with candidate host spacecraft
 - Enveloping candidate spacecraft environments
 - Mechanical, thermal, EMI/EMC, and contamination
 - Accommodate 100V spacecraft busses
 - Simplifying instrument to spacecraft interfaces
 - Simplifying satellite integration and test operations
 - Streamlining the instrument concept of operations

Launch Services: Currently June 2023 to 103º West

Launch services are provided by SES

- Procured and managed by SES separately from the Spacecraft contract
 - SES has recent experience with a variety of commercial launch vehicles:
 - SpaceX (Falcon 9)
 - Ariane 5 ECA
 - Soyuz
 - Proton Breeze M
- Launch services include:
 - All applicable licensing and permitting
 - TIMs and applicable reviews
 - Launch site integration and testing
 - Launch and early orbit support

System Data Flow Block Diagram

Organization and External Interface View

Significant Accomplishments Since PDR

Project

- Project Re-planned in order to increase cost reserves by \$5.8M
 - Instrument simplified
 - Science prioritization
 - Ground system processing reductions and optimization
 - Completed assessment and impact on Level 1 & 2 requirements
 - Updated concept of operations
 - Revised project plan to increase project cost reserves
- Conversion of LM subcontract to Firm Fixed Price to reduce risk of future cost growth (in process)
- Host management strategy is a) to assure SES a mass not to exceed 176kg (roughly 25% growth over proposal mass); b) to assume a cost by SES not to exceed 25% growth over proposal.

Science:

- Significant improvement in end-to-end modeling
 - Improved model used for in-depth study of scene inhomogeneity, instrument calibration/characterization, and error budgets
 - Level 2 retrievals coupled to performance results from the instrument model

Instrument

- Instrument simplified to achieve to reduce risk, mass and cost
- Slit homogenizer baselined
- Still meets Level 1 requirements
- Engineering progress continues to mature the instrument baseline

Ground System

- Determined cost savings from the reduction in data rate due to the instrument descope
- Exploring cost reduction opportunities through the use of cloud-based and existing NASA computing resources retrieval timing tests, throughput (in process)

Significant Changes

ltem	PDR CBE/MEV	DPDR CBE/NTE	% change	
Instrument Mass (CBE/MEV)	186 kg / 213 kg	157 kg / 176 kg	-16% / -17%	
Instrument Power (CBE/MEV)	406 W / 538 W	393 W / 521 W	-3% / -3%	
Data Rate	18.7 Mbps	9.3	-50%	
Unencumbered Cost Reserves	\$7M	\$21.3M	+304%	
Funded Schedule Reserve	71 days	71 days	0%	

Replanned efforts have significantly increased the financial health and key contingencies of GeoCarb while maintaining performance that satisfied the Level 1 Requirements and Mission Objectives

Key Level 1 Requirements

Req ID PLRA	Project Level 1 Requirements	Baseline	Threshold	Expected
4.1.1.a / 4.1.2.a	Retrieve estimates of the column-averaged dry air mole fractions XCO2, XCH4, XCO and SIF from space-based measurements over cloud-free scenes	XCO2, XCH4, XCO, SIF	XCO2, SIF	XCO2, XCH4, XCO, SIF
4.1.1.b.a / 4.1.2.b.a	The bias corrected, clear-air, multi-sounding GeoCarb retrieval estimates for XCO2 will demonstrate multi-sounding precision better than	<0.3%	<0.6 %	0.2%
4.1.1.b.b / 4.1.2.b.b	The bias corrected, clear-air, multi-sounding GeoCarb retrieval estimates for XCH4 will demonstrate multi-sounding precision better than	<0.6%	N/A	0.4%
4.1.1.b.c/ 4.1.2.b.c	The bias corrected, clear-air, multi-sounding GeoCarb retrieval estimates for XCO will demonstrate multi-sounding precision better than	< 10% or 12 ppb (whichever is greater)	N/A	8%
4.1.1.c 4.1.2.c	Retrieval estimates of solar induced fluorescence (SIF) with NESR (W/m ² /µm/sr)	<0.75	<1.0	<0.5
4.1.4.a	Geostationary orbit longitude	85° W ±20°	N/A	103º W
4.1.4.c	Space-based measurements shall have spatial resolution at the sub-satellite point (single sounding)	< 60 km ²	<100km ²	< 60 km ²

"End to End" Simulator

Use of the Simulation System

- Propagate instrument characteristics into L2 retrieval errors
 - Trace L1 requirements (e.g., XCO₂) downward to instrument performance requirements (Level 3-4)
 - Radiometric Calibration
 - Spectral Calibration
 - Polarization response knowledge
 - Image navigation and registration
 - Separate random and systematic error effects
 - Examine different error effects on data quality filtering
 - Value of the Slit Homogenizer
- Propagate L2 retrieval errors into flux estimates
 - Trace L1 requirements upward to Science Objectives
 - Examine data throughput impacts on Science Objectives

Slit Homogenizer Status

Low risk approach for SH development – Leveraging from ESA Sentinel-5

- - ILS distortion simulation algorithms
 - One of the SH vendors (WinLight) fabricated Sentinel 5 SH
 - Same test laboratory (ITO)
- Two vendors (LightMachinery and WinLight) have developed prototype SH
 - Both have heritage developing SH or similar optical elements for flight
 - Using 2 vendors to develop SH prototypes reduces risk
 - Prototypes are being tested at ITO, will inform flight model selection
- Schedule risk is mitigated by identifying key SH decision points in the IMS
 - We will design and procure 3 SH depths (and associated fold mirrors) if prototype testing is not available to finalize SH geometry
 - Decision on single SH design needed by Oct 2019 to not impact instrument schedule
- Flight slit homogenizer environmental testing by January, 2020 (prior to integration and prior to CDR)

We have a backup plan in-place should the SH be undesirable

- Backup plan (install a standard slit with a flat fold mirror) is low-cost and may be implemented late (Jan 2020)
- Meets threshold mission requirements

- Successful project-wide Re-plan reduced costs and risks across all segments.
- Reduced instrument complexity, mass, and data-rate while meeting all Level 1 Requirements
- Host management strategy is a) to assure SES a mass not to exceed 176kg (roughly 25% growth over proposal mass); b) to assume a cost by SES not to exceed 25% growth over proposal. Hosting uncertainties are being further mitigated through:
 - Regular interaction with our preferred host SES and other potential candidate hosts
 - Incentivize LM to have mass below 176kg (in process)
- Science segments are proceeding more quickly than anticipated due to close collaboration with other missions (e.g. OCO-2/3) and well established teamwork, which enables speedy closure for opportunities and changes
- PI assesses GeoCarb budget as "yellow" due to cost reserves being smaller than 25% (21.9% at D-PDR). This is an acceptable level of risk for a Class D project; however, the PI decided (1 May 2019) to Convert the LM contract to a Fixed Price Contract to reduce further the risk of cost growth.

• The GeoCarb Project has matured significantly during Phase B

- A revised PLRA better reflects the scientific goals of the mission
- The instrument design is far better than preliminary design maturity
- Scientific algorithms are well beyond typical missions at this stage
- Program-wide Replan significant reductions in instrument complexity, mass and data rate, which decreases hosting costs
- Conversion of LM contract to FFP reduces risk of future cost growth
- Working with SES and GEOshare to identify additional launch opportunities
- Medium risk, but Extremely High Reward!
 - The scientific outcomes will be unprecedented as we revisit the western hemisphere land masses every day – the information we will provide on the carbon cycle in the Amazon and in North America will be revolutionary
 - We will demonstrate the feasibility of a PI-led commercially hosted payload mission with a focus on Earth Science

GeoCarb has made great progress in all mission segments and through wise team-wide decisions after PDR. We are ready to proceed to Phase C/D. KDP-C is 18 July!!

Science Team Posters at IWGGMS

- Atmospheric Variations in Column Integrated CO2 On Synoptic and Seasonal Time Scales Over the U.S. (Wang)
- The Ability of GeoCarb to Constrain the Interannual Variability of Carbon Gases over the Amazon (Weir)
- Progress in Atmospheric Carbon Monitoring Using NASA's Goddard Earth Observing System (GEOS) Model and Data from the OCO and GOSAT Missions (Weir)
- Characterization of OCO-2 and ACOS-GOSAT Biases and Errors for Flux Estimates (Kulawik)
- Simulation-retrieval Experiments over the Western Hemisphere with the GeoCarb Greenhouse Gas Retrieval Algorithm (McGarragh)
- Seasonal and Diurnal Opportunities for XCH4, XCO2, and XCO for the Amazonian Rainforest Region Allowing Sampling and Validation (Chatfield)
- Comparison between MOPITT and OCO-2 Flux Inversions: Analyze of CO-CO2 Correlation (Peiro)
- Characterizing and Mitigating the Impact of Model Transport Errors on CO2 Flux Estimates in the Assimilation of XCO2 Data from OCO-2 (Jones)
- NASA's Carbon Cycle OSSE Initiative Informing future space-based observing strategies through advanced modeling and data assimilation (Ott)

See You at Launch!!!!!

ありがとうございました

THANK YOU