The Evolving Space-based Greenhouse Gas Measurement Fleet

David Crisp (Jet Propulsion Laboratory, California Institute of Technology) for the CEOS AC-VC Greenhouse Gas Team, 4 June, 2019

CE

Copyright 2019 California Institute of Technology Government sponsorship acknowledged

The Evolving GHG Constellation

- Space agencies are deploying a growing fleet of space-based sensors designed to collect high-resolution spectra within CO₂ and CH₄ bands at shortwave infrared (SWIR) wavelengths.
- These sensors are well suited for monitoring surface CO₂ and CH₄ fluxes because estimates of their column averaged dry air mole fractions (XCO₂ and XCH₄) are most sensitive to changes in the concentration these gases in the lower troposphere.
- Recent efforts to analyze the data from these sensors have demonstrated the precision (~0.125%) and accuracy (~0.25%) needed to resolve both anthropogenic and natural fluxes of CO₂ and CH₄ on spatial scales spanning individual power plants to regional scales.
- These systems still do not have the spatial or temporal resolution and coverage needed to provide timely, quantified guidance on natural and anthropogenic fluxes at urban to national scales.
- One way to address this challenge would be to would be to integrate the available space-based sensors into a virtual constellation, and harmonize their data products so that their XCO₂ and XCH₄ estimates can be combined and assimilated into atmospheric inversion models.

Updating the GCOS CO₂ and CH₄ Requirements

The CO₂ and CH₄ measurement requirements in the 2011 update for the Global Climate Observing System (GCOS) Systematic Observation Requirements for Satellite-Based Data Products for Climate (GCOS, 2011) were adopted as targets for a future GHG constellation.

Variable / Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability/ Decade*
Tropospheric CO ₂ column	5-10km	N/A	4 h	1 ppm	0.2 ppm
Tropospheric CO ₂	5-10 km	5 km	4 h	1 ppm	0.2 ppm
Tropospheric CH ₄ column	5-10 km	N/A	4 h	10 ppb	2 ppb
Tropospheric CH ₄	5-10 km	5 km	4 h	10 ppb	2 ppb
Stratospheric CH ₄	100-200 km	2 km	Daily	5%	0.30%

We are currently working with GCOS to refine these requirements

The **Pioneers**

- ENVISAT SCIAMACHY (2002-2012) First NIR/SWIR sensor for O₂, CO₂, and CH₄
 - XCO₂ and XCH₄ over continents
- **GOSAT (2009 ...)** First Japanese GHG satellite
 - TANSO-FTS optimized for high spectral resolution over broad spectral range, yielding CO₂, CH₄, and chlorophyll fluorescence (SIF)
- OCO-2 (2014 ...) First NASA satellite to measure O₂ and CO₂ with high sensitivity, resolution, and coverage
 - High resolution imaging grating spectrometer small (< 3 km²) footprint and rapid sampling (10⁶ samples/day)
- TanSat (2016 ...) First Chinese GHG satellite
 - Imaging grating spectrometer for O₂ and CO₂ bands and cloud & aerosol Imager

The Next Generation

- Feng Yun 3D (2017) Chinese GHG satellite on an operational meteorological bus
 - GAS FTS for O_2 , CO_2 , CH_4 , CO, N_2O , H_2O
- Sentinel 5p (2017) Copernicus pre-operational Satellite
 - TROPOMI measures O₂, CH₄ (1%), CO (10%), NO₂, SIF
 - Imaging at 7 km x 7 km resolution, daily global coverage
- Gaofen 5 (2018) 2nd Chinese GHG Satellite
 - Spatial heterodyne spectrometer for O₂, CO₂, and CH₄
- GOSAT-2 (2018) Japanese 2nd generation satellite
 - CO as well as CO₂, CH₄, with improved precision (0.125%), and active pointing to increase number of cloud free observation
- OCO-3 (2019) NASA OCO-2 spare instrument, on ISS
 - First CO₂ sensor to fly in a low inclination, precessing orbit

The Near Future

CNES MicroCarb (2021+) – compact, high sensitivity

- Imaging grating spectrometer for $O_2 A$, $O_2 {}^1\Delta_g$, and CO_2
- ~1/2 of the size, mass of OCO-2, with 4.5 km x 9 km footprints

Sentinel 5A,5B,5C (2022) - Copernicus operational services

Daily global maps of XCO and XCH4 at < 8 km x 8 km

• NASA GeoCarb (2023*) – First GEO GHG satellite

- Imaging spectrometer for X_{CO2}, X_{CH4}, X_{CO} and SIF
- Stationed above ~103° W to view North/South America

• CNES/DLR MERLIN (2024) - First CH₄ LIDAR (IPDA)

 Precise (1-2%) X_{CH4} retrievals for studies of wetland emissions, interhemispheric gradients and continental scale annual CH₄ budgets

Future Operational LEO GHG Constellations in Planning Stages

Copernicus CO₂ Sentinel (2025+)

- 3 or 4 LEO satellites in an operational GHG constellation
- Primary spectrometer measures O2 (0.76 μm A-band), CO2 (1.61 and 2.06 μm), CH4 (1.67 μm)
- Ancillary instrument include
 - NO_2 (0.450 $\mu m)$ at a spatial resolution of 2 km x 2 km along a 200-300 km swath for plumes
 - A cloud/aerosol multi-angle polarimeter

TanSat-2 Constellation

- 6 satellites, with 3 flying in morning and 3 flying in afternoon sun-synchronous orbits
- primary GHG instrument on each satellite measures CO_2 (1.61 and 2.06 μ m), CH_4 and CO (2.3 μ m) as well as the O_2 A-band (0.76 μ m) across a 100-km cross-track swath

TanSat Constellation

The GHG Mission Timeline

