

## Development of MRV system of Methane emissions from Rice paddies in the Mekong delta





RSEI



() IAXA

## **Cycle from Observation to Countermeasure**



Each country must submit INDC (Intended Nationally Determined Contributions) to UNFCCC before 2020

Modified from Yasuoka 2015



 Continuously flooded nearly through a year
 +

High straw production



 Anaerobic stress for rice production
 High GHGs emission

- (Alternate Wetting and Drying)
- Irrigation-water saving
   Anaerobic-stress mitigation
   GHGs mitigation





## **Rice farmers participatory field observation**



### Characteristics of the Mekong delta



### Greenhouse gas emission derived from rice straw use



Left on soil

- Feedstuffs for livestocks
- Compost for vegetable cropping
- Compost for Mushroom cultivation
- Free transfer to mushroom farmers
- mushroom farmers



### Greenhouse gas emission derived from straw burning - Comparison among different straw size and moisture -



## - Reduction of irrigation rate & GHGs (2012-2016)

- Increase of rice grains and its quality



## Flow chart



## IPCC guideline (Tier1) [Emission factor × Scaling factor in IPCC guideline]



# Cropping calendar evaluation with MODIS-NDVI (LMF-KF) for GCOM-C



Arai et al., 2018

## Semi-empirical daily CH<sub>4</sub> flux (mg C m<sup>-2</sup> hr<sup>-1</sup>) Model





## -Freeman-Durden decomposition-



#### Full-polarimetry (3m)



#### SCAN-SAR (25m)





#### SCAN-SAR (25m)



HH threshold (dB) = 0.550\*HV+12.9\*cosine(IA) -11.2



## Simulation scheme with 25m-spatial resolution - Hysteresis of soil matric potential energy-



```
Volumetric Soil Water Content [m³/m³]
https://slideplayer.com/slide/5038747/
```

*Irrigation, potential energy* >> Side flow, ground water flow



## Model structure



Implicit RK4 integration model WL = field water level Matric-potential at irrigation index (Di) =  $\Sigma$ (soil inundation rate before the irrigation, days after sowing, clay content)• $\alpha_i$ t = days after irrigation Gravitational-potential at irrigation index (G) = field water level after irrigation \* $\beta$  $\frac{dWL}{dt} = \gamma \exp \left(\delta * \{1 - \log[\exp(Di * (t - G)) + 2 + \exp(-Di * (t - G))]\} * Di * (t - G)\right)$   $- \frac{\delta * [\exp(Di * (t - G)) - \exp(-Di * (t - G))] * Di * (t - G)}{\exp(Di * (t - G)) + 2 + \exp(-Di * (t - G))}$   $+ Di * \{1 - \log[\exp(Di * (t - G)) + 2 + \exp(-Di * (t - G))]\} + rain-fall$ 

Irrigation function if *WL* < threshold : irrigate (i.e., *WL* += X)

Parameter update by the analysis with EO data



## NICAM-TM(Chem)-LETKF with AMSU, PREPBUFR and GOSAT/Sentinel-5P



 $\rightarrow$ GOSAT data assimilation with NICAM-TM!

## Implementation of variable localization scheme in NICAM-TM-LETKF (PREPBUFR&GOSAT)



Back ground covariance matrices

Kang et al., 2012

#### Increment of XCH<sub>4</sub> (ppb, 950 hpa) w/ VL

75

-25

-75

75

-25



#### Increment of XCH<sub>4</sub> (ppb, 950 hpa) w/o VL



2014051718-1803 Glevel 6, Inflation with RTPS=1 → Flux parameter estimation!

# Economic assessment of GHG mitigation under various uncertainties

