

Airborne Demonstration of Atmospheric CO2 Concentration Measurements with a Pulsed Multi-wavelength IPDA Lidar

Jianping Mao¹, James B. Abshire², S. Randy Kawa², Haris Riris², Graham R. Allan³, William E. Hasselbrack³, Kenji Numata², Jeff Chen², Xiaoli Sun², Julie M. Nicely¹, Joshua P. DiGangi⁴ and Yonghoon Choi⁴

> ¹University of Maryland, College Park, MD 20740, USA ²NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ³Sigma Space Inc., Lanham, MD 20706, USA ⁴NASA Langley Research Center, Hampton, VA 23681, USA

2017 ASCENDS/ABoVE Airborne Science Campaign in Alaska

Support from NASA's:

ASCENDS Pre-formulation Activity, ABoVE Science Investigation, Airborne Science Program

Multiple-wavelength approach for low-bias retrievals
Returns from elevated surfaces with accurate ranging capability and weighting functions peaking at different altitudes contain vertical information of CO2 distribution

Lidar Measurements to Cloud Tops

Transit south flight, 8/8/2017

Significant vertical and horizontal gradients from onboard Picarro

Transit south flight, 8/8/2017

- Large, stable, rich and valuable data set !
- High precision: < 1 ppm for 1-s average and < 0.5 ppm for 10-s average
- Low bias: lidar XCO2 agrees with in-situ profiles
- Lidar XCO2 clearly shows north-south gradients and CO2 enhancement from forest fires
- CO2 Sounder is ready to participate in future airborne campaigns
 - scale up to spaceborne see poster #55 by Abshire et al
 - status and future of ASCENDS Ken Jucks talk
- Lidar XCO2 data will be released to public this summer

<u>Acknowledgement:</u> This work was funded by the NASA ESTO IIP-10 program and the NASA ASCENDS preformulation activity, ABoVE science investigation and airborne science program. We also thank the NASA DAOF DC-8 team for help conducting the flight campaigns.

Backup slides

Measurement Approach

- Pulsed laser and time-gated receiver
 - >> Height-resolved backscatter measurements
 - >> High spectral resolution, high measurement sensitivity
- Multiple-wavelength measurement cross one CO₂ absorption line
 - >> Lineshape-resolved w/ 30 wavelengths
 - >> very narrow spectral coverage (< 0.15 nm)
- Fixed nadir-pointed

Measurement Parameters

- 1-µs laser pulse width
- 10 kHz pulse rate ~ a step of 100-µs
- 300 Hz laser scan rate cross 30 wavelengths on the 1572.335 nm $\rm CO_2$ line
- 10 Hz receiver data recording rate for all wavelengths ~ 0.1 s raw data reporting interval
- 10 ns receiver bin width ~ up to 1.5 m vertical resolution

