

LMATIETEEN LAITOS 1ETEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Global and Regional Methane Budgets Derived from GOSAT Retrievals and Groundbased Observations Using CTE-CH4 Atmospheric Inverse Model

Aki Tsuruta^{*1}, Janne Hakkarainen¹, Leif Backman¹, Yukio Yoshida², Dietrich G. Feist^{4,3}, Toshinobu Machida², Jost V. Lavric³, Ed Dlugokencky⁵, Juha Hatakka¹, Petri Keronen⁶, Elena Kozlova⁷, Paul Krummel⁸, Tuomas Laurila¹, Zoe Loh⁸, Nikos Mihalopoulos⁹, Simon O'Doherty¹⁰, Michel Ramonet¹¹, Yasunori Tohjima³, Ray Wang¹², Doug Worthy¹³, and Tuula Aalto¹

*1Finnish Meteorological Institute, Helsinki, Finland, Aki.Tsuruta@fmi.fi

04/06/2019 IWGGMS15, Sapporo, Japan Travel fund supported by Scandinavia-Japan Sasakawa Foundation

Atmospheric CH₄

- Atmospheric CH₄ has increased since preindustrial times
- GR slowed down in 1999-2006 •
- Started to increase with significant rate in 2007, and even at higher rate since 2014.

EDITORIAL

The growing role of methane in anthropogenic climate change

M Saunois¹, R B Jackson², P Bousquet¹, B Poulter³ and I G Canadell

1 Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, F-91191 Gif-sur

Yvette, France

- Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University
- Stanford, CA 94305-2210, USA

Statistica, CA 96305/2210, USA Institute on Ecosystems and Department of Ecology, Montana State University, Bozeman, MT 59717, USA

4 Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia E-mail: marielle.saunois@lsce.insl.fr

CTE-CH₄ model

CarbonTracker Europe-CH₄

Satellites bring advantages

- Ground-based observations are high precision and can be high frequency
 - Location is limited in some regions, especially around the Tropics.
- Satellite data has better global coverage
 - Some limitation over high latitudes and cloud/aerosol filtering

Ground-based (surface) observation network

One week of GOSAT observations, July 2010

Inversion setup

Prior fluxes

- Anthropogenic (annual): EDGAR v4.3.2 + 2018
- **Biospheric** (climatology): average over previous GCP-CH₄ bottom-up estimates (Saunois et al., 2016)
- Others: GFED v4.2 (fire), termites & other microbial source, geological sources, ocean

Resolution

- TM5: 1°x1° over Europe, 6°x4° global, constrained by 3hourly ECMWF ERA-Interim meteology
- Flux optimization: 1°x1° over Europe, region-wise elsewhere, weekly

Inversion setup

- Surface observations
 - station and ship, weekly and continuous
 - Data with little influence from local sources
 - Daily means from 12-16 local time (except for mountain sites) is taken for continuous data
 - Obs. Unc.: differ by sites, approx. 5-50 ppb
- GOSAT (NIES v2.72)
 - Latitudinal gradient differences from surface inversion is removed
 - Obs. Unc.: differ by each retrievals, approx. 20-100 ppb

*Obs. Unc. Contains measurement (retrieval) errors and transport model uncertainty

Inversion setup

- Simulation done for 2000-2017 (part of Global Carbon Project (GCP), Saunois et al., 2019 in preparation) *only 2009/07→ for GOSAT
- GOSAT inversion: only GOSAT data assimilated (i.e. no surface data)

Comparisons between surface and GOSAT inversion

- Average global total annual CH₄ emissions
 - 2010-2017: 544 Tg CH₄/yr [GOSAT]
 - 2010-2017: 539 Tg CH₄/yr [SURF]
- Similar results from both inversions

Comparisons between surface and GOSAT inversion

- Average global total annual CH₄ emissions
 - 2010-2017: 544 Tg CH₄/yr [GOSAT]
 - 2010-2017: 539 Tg CH₄/yr [SURF]
- · Similar results from both inversions
- Strong increase in CH₄ emissions during 2004-2007, 2013-2016

GLOBAL CARBON

PROJECT

Yea

Global total CH₄ emissions from CTE-CH₄

Comparison between surface and GOSAT inversion

- Most of the increases in 2004-2007 and 2013-2016 are found in anthropogenic sources
- 2013-2016 increase is also found in biospheric sources

Results

Comparison between surface and GOSAT inversion

- Most of the increases in 2004-2007 and 2013-2016 are found in anthropogenic sources
- 2013-2016 increase is also found in biospheric sources
- Source distribution is quite different between the inversions
 - Strong increase in anthropogenic emissions and opposite trend in biospheric emissions for 2010-2014 (surface inversion)
 - Some decrease in biospheric emissions for 2010-2014 in GOSAT inversion, but not as strong as the surface inversion

Results

Comparison between surface and GOSAT inversion

- Source distribution is quite different between the inversions
 - GOSAT brings larger emissions over north east Canada, China and central Africa
 - GOSAT brings smaller emissions over USA, Europe and Tropical Asia and central Russia

n [gCH₄ m

Evaluation

Comparison with inversion-independent data

- HIPPO aircraft atmospheric CH₄ data
 - Overestimation in GOSAT inversion especially for the NH.

Evaluation

Comparison with inversion-independent data

- HIPPO aircraft atmospheric CH₄ data
 - Overestimation in GOSAT inversion especially for the NH.
- TCCON XCH₄
 - Overesimation of GOSAT inversion in the NH
 - GOSAT inversion gives better agreement in the SH

- We carried out CTE-CH₄ atmospheric inverse model using ground-based observations (2000/01-2017/12) and GOSAT retrievals (2009/07-2017/12) for estimation of global CH₄ fluxes.
- Posterior CH₄ fluxes from both inversions show increase in CH₄ emissions associated with increases in atmospheric CH₄ GR (around 2007 and 2014).
- The increase in CH₄ emission estimates may be mostly due to anthropogenic sources for 2007→, while we cannot neglect an increase in biospheric emissions for 2014→
- Agreement with independent atmospheric CH₄ observations suggested:
 - Better estimates for the NH in the surface inversion
 - Better estimates for the SH in the GOSAT inversion
 - GOSAT inversion produces slightly better seasonal cycle over the Tropics

