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Towards using data from constellation of the greenhouse gas 
observing satellites, case study wth GOSAT and OCO-2

l Why multiple satellites?
l CO2 data from multiple satellites GOSAT, GOSAT-2, OCO-2, …. are available for 

use in inverse modeling, with potential for better constrain on surface CO2 fluxes.

l Why use high resolution?
l Assimilating gound-based data from continental locations, especially in populated 

regions, is not a trivial task, due to contamination from fossil sources
l [We hope] High resolution transport modeling helps reducing crosstalk between 

various sources: anthropogenic/fossil, ecosystem sink/respiration, biomass 
burning

l It was shown recently (Janardanan 2016), that transport modeling at resolution of 
GOSAT footprint (0.1 deg) is efficient in quantifying concentration enhancements 
from localized sources of CO2
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Prior CO2 fluxes at 0.1 degree resolution

Africa: biomass burning by GFAS, (gC/m2/day)

E Asia fossil emissions ODIAC, Jan 2010

ODIAC fossil fuel emissions aggregated 
to 0.1 degree  

ODIAC (Oda & Maksyutov, 2011) 
combines CARMA power plan emissions 
database, and DMSP nightlights 1 km 
resolution observation as proxy for 
population map, country totals same as 
CDIAC

Forest fire/biomass burning: 
GFAS daily at 0.1 degree derived from 
MODIS fire radiative power (FRP) 
product, Kaiser et al, 2012
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CO2 prior fluxes at 0.1 deg resolution

2010/06/29

Terrestrial biosphere

VISIT NEE 0.5 deg daily fluxes for 16 veg 
types mosaic (JCDAS), 

Saito et al GMD 2014, 

Optimized with atm. CO2 and other data. 
Use SYNMAP 1 km vegetation mosaic 
to remap 0.5 deg fluxes to 0.1 degree

Ocean CO2 surface exchange
Data assimilation of LDEO pCO2 
dataset with ocean transport and 
biogeochemistry model OTTM  and 
its adjoint monthly 1x1 deg fluxes 

(Valsala, Tellus, 2010)
interpolated to 0.1 deg, using 
MODIS 1 km land/ocean mask
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Coupled Eulerian-Lagrangian transport model (NIES TM + Flexpart)

-Configuration of NIES-TM  
- resolution 2.5  degree
- reduced grid near poles 
- mass conserving meteorology, mass 
fluxes on hybrid isentropic vertical 
coordinates

-Configuration of Flexpart
-JCDAS meteorology (1.25 deg, 40 model 
levels, 6 hourly)
-surface flux footprints estimated on 0.1x0.1 
deg, daily/hourly time step
-time window 3 days (for coupling to NIES-
TM at 0 GMT)
-for coupling to NIES-TM, 3D concentration 
footprints estimated on hybrid-isentropic 
vertical grid at 2.5 deg horizontal 
resolution

-Adjoint of coupled model
- hand-coded adjoint with same CPU cost in 
forward and adjoint modes, revised after 
Belikov et al GMD 2016

Figure 1. Global distribution of the sensitivity of 
CO2 concentrations ppm/(µmol/(m2/s)) with respect 
to surface fluxes, at TCCON site locations: 
(a) observation height of 1000m, (b) 3000m 
Belikov et al  ACP 2017
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Flux inversion problem
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Inverse problem - find a surface flux field x that matches the observed CO2 
concentrations y:

Here, y – CO2 observations, H – transport model (linear operator), 
xp – prior flux, x – grid-resolving flux correction field

As the problem is ill-constrained in case of large dimension of x,  
regularization is applied by adding regularization term             to 
the cost function J:

r - residual misfit, B - flux error covariance matrix, R -data uncertainty.
Optimization problem can be reduced by applying substitutions:

Note: in matrix L - non diagonal elements declining as ~exp(-x2/r2) with distance 
between grid points, D – diagonal matrix of flux uncertainties

where

xBxT 1-
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Inverse model setup and technical spec 

-Observational data:  Obspack GVPlus 2015, WDCGG+Siberia

-Prior uncertainty at 0.1 deg : CO2
land:    monthly MODIS GPP (multiplied by 0.2)
ocean: monthly inter-annual variability of the OTTM 4d-var model fluxes

-Time window: for 2015: bi-weekly fluxes Oct 1, 2014 – Mar 31,2012.  Week defined 
as ¼ of a month

-Optimization problem: reconstruct fluxes at resolutions of 0.1 deg

Some technical data: size of Lagrangian H matrix 
- Obspack 6 GB/year, GOSAT 26 GB/year, OCO-2 240 GB/year (daily 0.1 deg)
- memory use by optimization program >=450 GB (server with 512 GB RAM)
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Preparation of  Obspack, GOSAT and OCO-2 Level 2 data 

To match horizontal resolution 0.1 deg of the flux data, OCO-2 v9 lite 
data are aggregated into two 1 second averages, with 4 footprints 
merged together in 2 groups (1 to 4) and (5 to 8). Only land nadir 
data are used.

Single scan GOSAT NIES L2 v02.72 data are used without averaging

Obspack data processing: pair of flask is averages onto one 
observation, continuous data over land averaged from 2pm to 4 pm 
into one observation per day, one data point early morning average 
for mountain sites 



8

Bias correction of GOSAT  Level 2 data (NIES v2.72) in 2015 via 
comparison to XCO2 simulation optimized with surface inversion
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Bias correction of OCO-2 Level 2 data (v.9 lite), for 2015 via 
comparison to XCO2 simulation optimized with surface inversion
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Optimized CO2 concentrations

Syowa, Antarctica Yonagunijima
(Okinawa pref)

observations (blue), forward/prior (plum), inversion (green) 
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Optimized CO2 concentrations

Barrow, Alaska Pallas, N. Finland

observations (blue), forward/prior (plum), inversion (green) 
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Natural fluxes in 2015, global

Surface fluxes gC/m2/day (without  ODIAC)
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Natural fluxes in 2015, East Asia

Surface fluxes (without  ODIAC)
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Natural fluxes in 2015

Surface fluxes (without  ODIAC)
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Summary 

• Ability to quantify natural and anthropogenic fluxes of CO2 from atmospheric 
observations is important for climate change mitigation. 

• Until now low resolution Eulerian models were applied to understanding natural 
fluxes, for which anthropogenic emission plumes were providing an interference. The 
anthropogenic emission estimates had to be done using high resolution regional 
models. Simulation of continental continuous observations was difficult.

• We developed a computationally efficient approach for inverse surface flux modeling 
at fine-grid scale of 0.1 degree globally,

• We applied it to estimating sources and sinks of CO2 using combination of ground 
based, GOSAT and OCO-2 data.

• Inverse model optimized concentrations are used to implement bias correction for 
GOSAT (v02.72) and OCO-2 (v9) Level 2 data.   

Poster presentations on high resolution methane transport and inversion: 
- 36 Relationship between Methane Enhancements Observed by GOSAT and Country 

Scale Anthropogenic Emissions in Asia (R. Janardanan, NIES, Japan)
- 39. Comparing National Methane Emissions Inventories with Estimates by the 

Global High-resolution Inverse Model (F. Wang, NIES, Japan)
- 40. Modeling of Anthropogenic Methane Emissions Based on Ground-based 

Monitoring and GOSAT Satellite Retrievals (A. Tsuruta, FMI, Finland)
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Optimized solution compared to  OCO-2 Level 2 data (v.9 lite), 
OCO-2 plus surface inversion


