Towards understanding the contrasting CH₄ emission variations over tropical continents

Liang Feng, Paul I. Palmer, Mark Lunt, Robert Parker, Hartmut Boesch

> NCEO, University of Edinburgh NCEO, University of Leicester

What are the reasons that atmospheric CH₄ has experienced growth rates > 1990s mean value?

Based on similar GOSAT XCH4 data, two recent papers reach different conclusions about about geographical hotspots for emission growth, e.g. India.

We directly use GOSAT X_{CH4}:X_{CO2} ratios (Fraser et al, 2014; Feng et al, 2017)

- ✓ Ratio product less prone to bias, but subject to error from high cirrus clouds; avoids use of model X_{CO2}
- ✓ Lots more data than the full-physics approach, particularly over key geographical regions

Consistent coverage provided by ratio data is essential for studying spatial temporal inter-annual variations of CH₄.

Experiment setup:

- **Prior CO2 Inventories:** Fossil fuel ; Biospheric fluxes: Oceanic surface fluxes; Biomass burning.
- **Prior CH4 Inventories:** Wetland; Rice; Termites; Animal; Biomass burning; Fossil fuel ; Waste; Gas Industry; Coal mine; Ocean; Biomass burning...
- Prior Uncertainties:

Land: 50%; Ocean: 50%

• CTM (Geos-Chem v9.02)

- ✓ Vertical Res: 47 levels from surface to 0.1 hPa.
- ✓ Horizontal Res: 4^o (latitude) × 5^o (latitude)

Observations:

- ✓ Proxy GOSAT XCH4/XCO2 UoL v7
- ✓ In-situ CH4 from 52 stations .
- ✓ In-situ CO2 from q stations .

Outputs:

- ✓ Monthly CO2 fluxes.
- ✓ Monthly CH4 fluxes.

(Feng et al., in prep)

Posteriori fluxes inferred from in situ data

Posteriori fluxes inferred from GOSAT X_{CH4}:X_{CO2}

Biggest differences between in situ and GOSAT data are over tropics.

GOSAT: CH₄ flux trends, 2010-2016

Global emission growth is dominated by tropical lands

Tropical Hot spots:

> Tropical Africa

Emission trend:

- agrees with nested high-resolution inversion (Lunt et al., 2019).
- mainly caused by expanded Sudd wetland (Lunt et al., 2019).
- temporary increase sufficient explain 25% of global increase in CH₄.

<u>India</u>

Emission change

- <u>Small annual increase from 2012</u>, but without spike in 2014 as reported by Miller et al (2019)
- Smaller seasonal cycles (max and min) for both CH₄ fluxes and precipitation in 2013-2015.

West and East Amazon

Emission Change

- Highest emission at mid 2011, following 2010 floods (Parker et al.,. 2018).
- Negative trend down till 2013, consistent with precipitation (and water table depth) changes.
- After 2013, emission goes up following the increase of water table depth.
- Spike seen at early 2015 in both GOSAT X_{CH4} and posterior fluxes.

Southern China

Emission Change

- 1) Emission peak reached its highest at 2010 and 2013 summer following 2010/2013 flooding
- 2) Emission peak goes down when summer precipitation goes down.
- 3) Seasonal cycle between for 2014 and 2015, much smaller than previous year.

2015

2016

China flooding causes worst death toll in decade

Closing remarks

- We directly use X_{CH4} : X_{CO2} proxy product to help minimize bias in flux estimates
- Our EnKF approach simultaneously estimates CH₄ and CO₂ regional fluxes.
- Primary results show growing CH₄ emissions from tropical continents, where Africa dominates the pan-tropical signal
- We find variations in tropical continental fluxes are strongly influenced by hydrological conditions.