

Information Content of Lower-Tropospheric Methane Retrievals From AIRS and GOSAT data

Authors

John R. Worden¹, Yi Yin², Anthony Bloom³, and Christian Frankenberg⁴, Susan Kulawik³, and Robert Parker⁴

1. Earth Sciences Section, Jet Propulsion Laboratory / CalTech, Pasadena USA

2. Californian Institute for Technology

3. BAERI

4. Dept. of Physics and Astronomy, University of Leicester, Leicester, UK

©2019 California Institute of Technology. Governm

ponsorship acknowledged

Sensitivity of Atmospheric Methane to Surface Sources

Methane profile at ~55 N in July 2006

Primary sources on uncertainty when using satellite and surface data to quantify fluxes

Methane profile at ~55 N in July 2006

Objective: Combine Total Column Measurements with Thermal IR Measurements to Quantify Lower Tropospheric Methane

Precision ~15 ppb Bias ~-17 to 2ppb Parker et al., GRL 2011 Precision ~30 ppb Bias ~-.2 ppb for latitudes between 50 S and 50 N Worden et al., AMT 2012; Alvarado et al., 2015

Both data sets use optimal estimation \rightarrow a priori, vertical sensitivity (averaging kernels), and aposteriori uncertainties for noise and interferences are provide in the product files

Example of Lower-Tropospheric Methane from GOSAT and TES: GOSAT and TES Total Column Averaging Kernels

$$\hat{C} = C^{a} + C_{air}h^{T}A(x - x^{a}) + C_{air}\sum_{i}h^{T}\delta_{i}$$
$$\hat{C}_{L} = \hat{C}_{tot} - \hat{C}_{U}$$

$$\hat{C}_L = C_L^a + C_{air} \boldsymbol{b}_L (\boldsymbol{x}_L - \boldsymbol{x}_L^a) + C_{air} (\boldsymbol{b}_u - \boldsymbol{h}_u \mathbf{A}_{\text{UU}}^{\text{TES}}) (\boldsymbol{x}_u - \boldsymbol{x}_u^a) + C_{air} \sum_i \boldsymbol{h} \boldsymbol{\delta}_i$$

Divide above equation by the column of dry air in the lower troposphere and re-arrange and combine terms and we get:

$$\widehat{X}_{L} = X_{L}^{a} + a^{T}(\boldsymbol{x} - \boldsymbol{x}^{a}) + C_{air}/C_{L}^{air}\sum_{i} \boldsymbol{h}\boldsymbol{\delta}_{i}$$

Lower Tropospheric CH₄ Estimates are for a Monthly Average on a 4x5 degree bin

Calculated uncertainty ~10-30 in tropics ~20-60 ppb at high latitudes

RMS difference between lower-troposphere and surface data ~30 ppb Use Surface data comparison, transferred through GEOS-Chem model, to calibrate data

Comparison Using GEOS-Chem (and LMDz) models with Surface Network Suggests Seasonal Variability in Bias at High Latitudes → Likely Because of Tropopause Variations

Assume that difference between the lower-troposphere and surface in the model is well understood Comparison between two different chemistry / transport models support this assumption

 $\boldsymbol{C} = \left(\widehat{\boldsymbol{X}}_L - \boldsymbol{X}_S\right) - \left(\widehat{\boldsymbol{X}}_L^M - \boldsymbol{X}_S^M\right)$

Conclusion: For Now just use tropical data where seasonal variability in bias is < 5 ppb

Analytical Inversion System

 $A = (B^{-1} + H^{T}R^{-1}H)^{-1}$

 $\mathbf{x}^{a} = \mathbf{x}^{b} + \mathbf{A}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}^{b})$

Wetland CH₄ emissions, WetCHARTs, Bloom *et al.*, (2017)

Fire CH₄ emissions, GFED4.1, van der Werf *et al.*, (2017)

State Vector:

- Monthly wetland/fire emissions from three tropical regions
- The rest of the world (boundary conditions)
- Initial conditions (four latitudinal bands)

Transport model:

- GEOS-Chem (4x5, 47 levels) *Observations:*
- Monthly LT retrievals 30S-N

Sensitivity of Lower-Troposphere Data to Amazon wetland Emissions Show Lower-Troposphere Concentrations Are Sensitivity to Seasonal Cycle of Wetlands (~10 Tg Emissions ~ 15 ppb change)

Averaging Kernel and Error Reduction

1 DOF means that the emissions estimate is entirely dependent on the wetland fluxes

DOFS ranges from 0.8 to 0.95 for Amazon

Using the Hessian we calculate a 60% error reduction from the prior

Prior assumes ~50% uncertainty

No estimate on the emissions yet.. Could not get tha working before meeting 🙁

Summary

Lower-troposphere methane data from GOSAT/AIRS combination have ~15 ppb calculated / actual uncertainty in tropics for a 5x4 lon/lat average with peak sensitivity at ~900 hpa

Three approaches to cal/val:

1) GOSAT is validated using TCCON, 2) AIRS is validated using HIPPO, 3)Lower troposphere product is evaluated against surface network. Comparison against surface network (with GEOS-Chem) reveals latitudinal variation in bias with higher latitude data also showing a significant seasonal bias (~10 ppb¥), likely due to changes in the tropopause.

Use of Lower-troposphere data product provides ~0.9 DOF for Amazon wetland emissions for all seasons with ~60% error reduction from the prior

At least for the Amazon, the seasonal variability of lower-troposphere is consistent with wetlands and suggest inundation is primary driver for emissions but with possible contribution from precipitation

Primary sources on uncertainty when using surface data to quantify fluxes

Estimates of Methane Fluxes Using Methane Profile Information Reduces Sensitivity to Background (transport/chemistry) Uncertainties Bousserez et al., ACP 2016

-0.03

-0.10

(d)

0.03

0.10

Use of Thermal IR and Near IR radiances allows for profiling of methane that can resolve the boundary layer.

Use of profiles (instead of columns) to quantify fluxes results in a: ~50% increase in sensitivity to surface fluxes

Substantial reduction (> 10x reduction) in sensitivity to background errors (e.g. transport and chemistry)