Pre-launch and on-orbit spectral calibration of MethaneSAT

MethaneSAT **Acknowledgements**

> **Funding** MethaneSAT LLC, **Environmental Defense Fund**

David J. Miller¹, Kang Sun², Jonathan E. Franklin¹, Christopher Chan Miller^{1,3,4}, Sébastien Roche^{1,3,4}, Bingkun Luo⁴, Xiong Liu⁴, Steven Wofsy¹, and the MethaneSAT team

- 1: Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- 2: Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA
- 3: Environmental Defense Fund, Washington, D.C., USA
- 4: Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

Presentation 4.16

Correspondence to:

David J. Miller (djmiller@g.harvard.edu)

I. Introduction

BAE Systems

- > MethaneSAT is a push-broom, area-mapping satellite launched into sun-synchronous orbit on March 4, 2024
- ➤ The MethaneSAT mission aims to catalyze methane (CH₄) emission reductions by mapping, quantifying, and tracking oil and gas CH₄ discrete and dispersed sources
- > We present novel methods for pre-launch instrument spectral response function (ISRF) estimation, evaluate on-orbit spectral calibration, and investigate thermal defocusing impacts on ISRFs and retrievals

Specification	CH ₄ , CO ₂ Spectrometer	O ₂ , H ₂ O Spectrometer
Passband (nm)	1598 to 1683	1249 to 1305
L2 retrieval bands (nm)	1598 to 1618 (CO ₂) 1629 to 1654 (CH ₄)	1249 to 1288 (O ₂) 1290 to 1295 (H ₂ O)
Dispersion (nm / pixel)	0.08	0.06
Median spectral FWHM (nm)	0.25 (CO ₂) 0.23 (CH ₄)	0.16
Calibration window spectral pixel range	720 to 2030	720 to 2030
Science window spectral pixel range	880 to 1967	816 to 1807
Usable across-track pixel range	35 to 2013	32 to 2018
Point spread function FWHM (spatial pixels)	1.8	1.5

II. Methods

- ➤ ISRF estimation algorithms for MethaneAIR (Staebell et al., 2021) were refined for MethaneSAT
- > In-band straylight correction via iterative deconvolution with far-field kernel followed by ghost kernel (Tol et al., 2018) was applied to exposures within usable acrosstrack pixel area
- ➤ Instrument line shapes at 17 (CH₄) and 13 (O₂) central wavelengths were smoothed across moving spatial pixel windows to mitigate laser speckle noise
- Subsampling of micro-wavelength steps ensured consistency between data sets
- > ISRFs were fit using an iterative, third order Savitzky–Golay filter with n=31 window length
- > ISRFs at overlapping spatial pixels for 3 illumination fields were merged via exponential signal-weighted median, reducing flight system level FOV edge artifacts
- Outlier ISRF positions were masked and gap-filled using median ISRF of 30 nearest spatial pixels

420	440	460	480	500
Si	oec	tral	pix	els

Experiment	Micro- wavelength step size (nm)	Micro- wavelength step range (nm)	Exposure level smoothing window (spatial pixels)
CH₄ sensor level goBack	0.010	0.16	20
CH ₄ flight system level	0.010	0.16	30
O ₂ sensor level goBack	0.008	0.10	10
O ₂ flight system Level	0.008	0.10	10

III. ISRF Fitting

- > We compare ISRFs from individual spectrometers (sensor level) at three temperatures, and integrated flight system
- \triangleright We highlight sensor level cold (CH₄) and flight system level (O₂) ISRFs representative of on-orbit performance

- Peak-normalized ISRF shapes are consistent across data sets, including spatial/spectral edges
- > ISRF wings have relatively small speckle noise features minimized by exposure level spatial pixel smoothing

IV. Wavelength calibration

- > Spectral distortion of illuminated slit is < ± 0.75 spectral pixel (CH₄, CO₂) and $< \pm 0.25$ spectral pixel (O₂)
- > Dispersion decreases with increasing wavelength
- > Wavelength calibration curve is derived with 3rd order polynomial fitting, where spatial pixel ensemble of Akaike and Bayesian information criteria are minimized
- > Wavelength calibration coefficients are generally insensitive to temperature, except for <0.1 nm wavelength offset that is fit within L2

V. Thermal ISRF variation effects

> ISRF widths in four different temperature experiments generally show <1% width temperature sensitives relative to ~5% across-track gradient, except for ~5% width temperature sensitivity and ~10% across-track gradient in the CO₂ band

- > During on-orbit collects, the optical bench was thermally stable across three seasons
- > On-orbit CH₄ sensor objective temperatures are cooler than target sensor level temperatures, closest to the cold temperature sensor goBack experiment

j3	ISRF lookup table	Fitted VCD	VCD standard error	Residual	Fitted VCD bias relative to
		(molecules CH4 cm ⁻²)	(relative error)	RMS	flight system level
DN signal	Flight system level	6.905 x 10 ¹⁹	2.066 x 10 ¹⁷ (0.3%)	0.00181	NA
ON sig	Sensor level cold	6.916 x 10 ¹⁹	2.080 x 10 ¹⁷ (0.3%)	0.00182	+0.16%
	Sensor level nominal	6.922 x 10 ¹⁹	2.097 x 10 ¹⁷ (0.3%)	0.00183	+0.25%
	Sensor level warm	6.951 x 10 ¹⁹	2.193 x 10 ¹⁷ (0.3%)	0.00189	+0.67%

> ISRFs from thermal variation experiments result in <0.7 % change in fitted vertical column density based on single spatial pixel retrievals using pure CH₄ gas calibration cell illuminated exposures

VI. On-orbit ISRF stability

- > We evaluated four distinct ISRF data sets for on-orbit calibration by examining scaling the tabulated ISRF wavelength grid by a fitted squeeze factor at L2
- > Positive deviations in squeeze factors indicate on-orbit ISRFs narrower than pre-launch

Libya4 flat field scene: clear sky, lower XCH₄ variability, >0.7 albedo

- > Cold temperature ISRFs are narrowest and closer to on-orbit CH₄ and CO₂ bands, whereas warmer temperature case is closet to on-orbit O₂ ISRF
- > CO₂ band squeeze factors exhibit relatively higher temperature sensitivity
- > Fitted XCH₄, VCDs, and fit residuals across-track variations are not correlated with the narrower on-orbit across-track edge ISRFs compared with those during pre-launch

VII. Key Points

- > ISRF methods were refined to account for MethaneSAT's larger field of view
- > ISRFs measured at temperatures closest to on-orbit have optimal ISRF squeeze factors
- > On-orbit thermal stability across multiple seasons suggest ISRFs are stable

References

Staebell, C., et al.: Spectral calibration of the MethaneAIR instrument, Atmos. Meas. Tech., 14, 3737-3753, https://doi.org/10.5194/amt-14-3737-2021.

Tol, P.J.J., et al.: Characterization and correction of stray light in TROPOMI-SWIR, Atmos. Meas. Tech., 11, 4493–4507, https://doi.org/10.5194/amt-11-4493-2018.