

Daniel Moore

WattTime

Nicole Brown, Gary Collins, Zoheyr Doctor,
Marisa Hughes, Christy Lewis, Gavin
McCormick, April Nellis, Michael Pekala, Krsna
Raniga, Elizabeth Reilly, Michael Robinette,
Justin Rokisky, Ishan Saraswat, Peter Thomas

IWGGMS-21

Takamatsu, Japan – 11 June 2025

Comprehensive Emissions Tracking

662,637,077 emitting assets

aggregated by city, state, country, etc.

10+ years (2015-2025)

monthly data 2021 onwards

10 sectors

67 sub-sectors

3 GHGs

8 non-GHG pollutants

Built by a global, not-for-profit coalition of over 100 universities, scientists, and Al experts

→ Explore Map

→ Access Open Data

Global inventory of individual emitting sources

- Allows for inventories for cities, states, countries, ownership, arbitrary grids
- Monthly release
 - 60-day latency
- Freely accessible

Examining the components of emissions

Each of these can individually measured/constrained (e.g. through satellites)...

... allowing for cross-validation

Climate TRACE data curation

 Subsector-specific models used by coalition members:

Methodologies

- Data specifications:
 - Monthly granularity
 - Source-level estimates
 - Complete timeseries'
 - Consistent metadata
 - Increasingly accurate estimates

Emissions estimates

100 coalition members submit source-level and country-level emissions

Data validation

Comparison to other inventories, measurements, indicators

Data standardization

Ensure completeness, mathematical consistency, monthly granularity

Spatial disaggregation

Remaining emissions not attributed to sources are spatially distributed

Climate TRACE data curation

Emissions estimates

100 coalition members submit source-level and country-level emissions

• Subsector-specific models used by coalition members:

"Meta-modeling" (data-fusion): Incorporation of multiple data sources, including models, measurements, and related processes, to validate and/or create best-possible estimates of emissions and emissions-related activity.

dardization

mpleteness, tical cy, monthly

- Source-level estimates
- Complete timeseries'
- Consistent metadata
- Increasingly accurate estimates

Spatial disaggregation

Remaining emissions not attributed to sources are spatially distributed

Increased accuracy of spatial disaggregation of emissions

Incorporating satellite measurements to improve estimates

Bayesian framework to produce posterior distributions of emissions rates from individual sources or a collection of sources directly using measurements

Credit: Zoheyr Doctor

Emissions data to drive impactful decisions: case study of iron and steel production

different production technologies wide variability in emissions per iron produced opportunity to decrease emissions

Credit: Ting So

Emissions reducing solutions in steel production

BF-BOF: Blast furnace - basic oxygen furnace DRI-EAF: Direct reduced iron – **electric** arc furnace

ClimateTRACE.org

Thank you!

Daniel Moore
Dan.Moore@WattTime.org

