

Towards Shipborne Emission Monitoring and Satellite Validation of CO₂, CH₄, CO, and NO₂ Through Simultaneous Columnar and In Situ Observations

Astrid Müller mueller.astrid@nies.go.jp

Astrid Müller (1); Hiroshi Tanimoto (1); Matthias Max Frey (2); Vincent Enders (3, 4); Prabir K. Patra (5, 6); Takafumi Sugita (1); Ralph Kleinschek (3); Karolin Voss (3); André Butz (3, 7); Isamu Morino (1); Shin-ichiro Nakaoka (1); Hideki Nara (1); Toshinobu Machida (1)

1. National Institute for Environmental Studies, Japan; 2. Karlsruhe Institute of Technology, Germany; 3. Institute of Environmental Physics, Heidelberg University, Germany; 4. Institute of Materials Chemistry, TU Wien, Austria; 5. Japan Agency for Marine-Earth Science and Technology, Japan; 6. Research Institute for Humanity and Nature, Japan; 7. Heidelberg Center for the Environment, Heidelberg University, Germany

Importance

For the global stocktake, we need:

- Improvement of emission inventories
- Assessment of the reduction potential of anthropogenic GHG and air pollutant emissions
- ➤ Precise observations with high spatial and temporal coverage

Current situation

The global coverage of in situ observations by public and private networks (ship-, aircraft-, ground-based) and satellite observations is increasing.

New generation satellite missions combine CO₂ and NO₂ observations to better constrain fossil fuel-related emissions and plumes (GOSAT-GW, CO2M).

Problem

Over oceans and coastal regions, reference datasets for carbon cycle studies and satellite validation remain scarce (e.g. by TCCON).

TCCON: Total Carbon Column Network (https://tccondata.org/)

We use **new ship-based remote sensing techniques** as complement to stationary networks for measuring XCO₂, XCH₄, XCO, and VCD NO₂, combined with surface in situ observations.

GOSAT-GW: Global Observing SATellite for Greenhouse gases and Water cycle

CO2M: Copernicus Anthropogenic Carbon Dioxide Monitoring

VCD: vertical column density

X[species]: column-averaged dry air mole fraction

a) Semi-automatic FTIR-VIS Spectrometer

(FTIR: Fourier Transform Infrared, VIS: visible spectral range)

- 1 FTIR spectrometer (Bruker Optics, EM27/SUN) (spectral range 0.91–2.5 μm)
 Target: total column (TC) & column-averaged dry air mole fractions (Xgas) of CO₂, CH₄, CO (retrieval: *PROFFAST v2.4, KIT, 2024, https://www.imk-asf.kit.edu/english/3225.php*)
- VIS spectrometer (Ocean Optics, QE-Pro) (spectral range 400.7–495.9 nm)
 Target: vertical column density (VCD) of NO₂
 (retrieval: pre-processor (Enders, V. et al., in prep.); QDOAS (Danckaert et al., 2017))

b) Surface in situ observations

- CAPS NO₂ analyzer (Shoreline Science, CAPS-NO-B-7003C). Target: **NO₂**.
- NO/NO₂/NOx Analyzer (Thermo Scientific, 42iTL). Target: NO.
- CRDS analyzer (Picarro, G2401). Target: CO₂, CH₄, CO.
- O_3 analyzer (Thermo Scientific, 49i). Target: O_3 .

CAPS: Cavity Attenuated Phase Shift **CRDS:** Cavity Ring-Down Spectroscopy

c) Additional data and filtering

- ERA5 hourly data on pressure levels (Hersbach et al., 2023; Copernicus Climate Change Service (C3S) Climate Data Store, 2023)
- Climate TRACE (2023). Climate TRACE Inventory of Greenhouse Gas Emissions. Retrieved from https://climatetrace.org.
- Hysplit backward trajectories (https://www.ready.noaa.gov)
- Filtering ship exhaust:
 - a) wind direction & speed vs. ship direction & speed (rear funnel)
 - b) abrupt increase and decrease of NO and O_3 , respectively.
- 5 min averages

d) Location

Along major anthropogenic emission sources on Japan's coast between Kanto (Tokyo Metropolitan Area) and Kyushu.

The location was chosen for testing the performance of the semi-automatic FTIR–VIS spectrometer and its application to monitor anthropogenic emissions.

PGN: Pandonia Global Network

TCCON: Total Carbon Column Observing network

COCCON: COllaborative Carbon Column Observing Network

Case study Hiroshima - Kanda

Low

<0.10 Mt/Oct

- <0.30 Mt/Oct
 <0.59 Mt/Oct
 Steel factory
- <1.01 Mt/Oct</p>
 Oil/gas refinery
 <1.90 Mt/Oct</p>
 Cement industr

<1.90 Mt/Oct Cement industry

(source: Climate TRACE (2023)
Instrument viewing direction

Ship exhaust contaminated

Increased

Ship's direction: Hiroshima to Kanda

Increased

3 Results

Observations

Decreasing trends; lower values than at B

Peaks in CO_2 , NO_2 ; higher values than at **A**

CO peaks in the column before the surface

B: Fresh fossil fuel combustion

№ Lofted, aged CO-rich plume

A: Fresh combustion + CH₄ leaks?

B: Mixed aged industrial emissions

Column: Elevated CO₂, NO₂ and CH₄

Surface: decreasing CO₂ and low NO₂

Small peaks in surface CO_2 , CH_4 , CO

A, B: Lofted CO residual from incomplete combustion/ships?

NO₂: Local fossil fuel combustion

Local incomplete combustion, ZNG

Observations

6h backward trajectory 500 m

6h backward trajectory 100 m

Source: HYSPLIT trajectory model, https://www.ready.noaa.gov

- Power plant
- Steel factory
- Oil/gas refinery (source:
- Cement industry Climate TRACE (2023)

Instrument viewing direction

3 Results

Comparison of column-derived and surface in situ ratios Example 25 October 2023

Background removal: Subtraction of the rolling 5th percentile over a 1-hour centered window (preliminary)

- Location A shows higher CO and NO₂ enhancements relative to CO₂ compared to B, suggesting recent, inefficient fossil fuel combustion, while B might reflect either more aged emissions or the influence of power plants with emissions controls (NO_X-poor).
 - \rightarrow Emission sources can be power plants (NO₂-rich), mixed with industrial sources and ship exhaust (NO₂ + CO-rich).
- Similar CO/NO₂ ratios at location A and B suggest similar emission types.

4 Conclusion & Outlook

Combining observations by the semi-automatic FTIR-VIS Spectrometer with in situ surface observations, we demonstrate in
the initial analysis the potential for emission plume detection and its contribution to a better understanding of the vertical
distribution of anthropogenic emissions

Further analysis includes

- A more robust background removal method for estimating enhancement ratios in highly mixed emission regions
- An assessment of the contribution of the surface emissions to the column observations
- A more detailed emission source identification, including comparison with high-resolution model results.
- EM27/SUN retrieval with the upcoming *PROFFAST v2.4.1 release* (Feld, L., KIT), which is capable of handling mobile data.

A detailed description of the instrument setup and a case study comparing emission ratios with inventories is in preparation.

In that case study, distinct plumes allowed the background removal by using least-square line fitting to pre- and post-plume observations (*Luther et al., 2019*).

4 Conclusion & Outlook

Further outlook

- The future goal is to deploy the setup on a ship crossing the Pacific Ocean from North to South for direct validation of columnar satellite observations.
- Ship- and aircraft-based in situ data will complement the observations.

