Column and surface concentration observations of CO₂ & NO₂ at Yokosuka, Japan, in support of GOSAT-GW/TANSO-3

Yugo Kanaya¹, T. Miyakawa¹, M. Yamaguchi¹, A. Müller², M. M. Frey^{2,3}, I. Morino², M. Takigawa¹, P. K. Patra¹, T. Sugita², S. Inomata², H. Tanimoto², GOSAT-GW/TANSO-3 team members **1: JAMSTEC**, 2: NIES, 3: KIT

Takigawa, Patra, Yamaguchi Bisht et al.

Goal: Elucidate roles of NO₂ for better quantifying CO₂ emission and its change

- 1. 1-km scale WRF/Chem-GHG model (w. MIROC4-ACTM)
- 1) as GOSAT-GW/TANSO-3 demonstrator
- 2) Testbed of flux estimation methods (e.g., divergence)

 See posters (Yamaguchi et al., Bisht et al.)
- 2. Ground-based co-located column NO₂ & CO₂ measurements:
- 1) Validation
- 2) Demonstrate CO₂/NO₂ enhancement ratio that GOSAT-GW/TANSO-3 would observe over cities, underlying processes

This talk

Long-term MAX-DOAS NO₂ observations

MAX-DOAS remote-sensing network observations over Asia

Kanaya et al. ACP 2014, Choi et al. (RS, 2021), Ha et al. (submitted to PEPS, 2025)

https://www.jamstec.go.jp/egcr/e/atmos/observation/maxdoashp/

since 2007

TROPOMI

validation

YYYY/MM/DD

(opernicus Copernicus Atmospheric Mission Performance Cluster Service Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #26: April 2018 - February 2025

Improved MAX-DOAS retrieval: benchmarked with co-located CAPS and Pandora

Updated optimal estimation parameters:

State vector (TNO2VCD, $\frac{V_{0-1km'}}{V_{0-0.5km'}}$, $\frac{V_{1-2km'}}{V_{0.5-1km'}}$); Uncertainty range (Sa(2,2), (3,3), (4,4)=(0.05, 0.03, 0.03) (0.4, 0.4, 0.2)

dat

(molec cm-2)

Yokosuka Campaign 2024-2025

Co-located

Column meas.: Pandora, MAX-DOAS, EM27/SUN,

Surface meas.: LI-7810, CAPS + low-cost sensors

Yokosuka (35.32N, 139.65E), ~30km south of central Tokyo

Nov 2024 to Feb 2025

>40 days of coincident observations (focus on 10 selected days)

Thanks to Nippon Marine Enterprises, Ltd. for daily operation!

Time series (5 days for example): column & surface, NO₂ & CO₂

Column vs. surface correlations: individually for CO₂ & NO₂

NO₂-CO₂ correlation: demonstrating GOSAT-GW/TANSO-3 mission concept

How are these slopes determined? Mechanism?

CO₂/NO₂ Enhancement ratios (2024-25): comparison to emission inventory (co₂/NO_x)

2. Perturbation from other non-local sources with larger emission ratios

CO_2/NOx enhancement ratio in Feb 2022 (observation O, model \blacksquare)

Again in 2022, the slope for column is larger than for surface (observations)

Model simulations for 2022 did not reproduce this tendency: other sources? Check with model 2024.

Comparisons and implications

our CO_2/NO_2 enhancement ratio: 2.6 (1.9-4.6) ×10³ mol/mol comparisons to past studies for city emissions, using OCO-2/3, TROPOMI, GOSAT:

Emily G. Yang et al., JGR 2024

(1.2-7.1)x10³ mol/mol for Buenos Aires (0.058-0.336 column ppm/Pmolec cm-2)

Hayoung Park et al., RSE 2021

 $(4.2-30) \times 10^3 \text{ mol/mol } (XNO2/\Delta CO2= (1-8)\times 10-5 \text{ mol m-2/ppm})$

Silva and Arellano, RS 2017

20x10³ mol/mol for Japan (via NO2/CO and CO/CO2)

Hakkarainen et al., GRL2016

21x10³ mol/mol for Asia (read from Fig 2)

(Lindenmaier et al., PNAS 2014; (0.7-7)x10³ mol/mol (PP), 25x10³ mol/mol (non-FF))

- Assumed GOSAT-GW TropNO2VCD NO₂ detectivity of $3x10^{15}$ molec cm⁻² will translate to $\Delta XCO_2 \sim 0.4$ ppm, when emission ratio is exactly known
- ■XCO₂ offset may change day by day:

Geostationary satellite is preferred.

For low orbit, reference XCO₂ (outside of the plume) needs to be well defined.

Summary

- The enhancement ratios of $\Delta XCO_2/\Delta TropNO_2VCD$ and their variations were demonstrated using co-located EM27/SUN and Pandora at Yokosuka, Japan.
- The enhancement ratios to be observed by satellites may differ from local emission ratios due to perturbation from distant sources and oxidation.
- More studies of the ratios using ground-based remote sensing are needed.