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C40 Cities and NASA OCO-3 SAM

C40 Cities Climate Leadership Group

NASA’s OCO-3 Scanning Area Mapping (SAM)

96 Cities, 582 million residents, 20% of the global GDP

C40 cities have been using self-reported GHG emission inventory (GPC) to track their mitigation progress toward net-zero by 2050
GPC Provides the principles for calculating emissions, but it does not require specific methodologies

Global South cities tend to show larger variability in emission estimates among GPC, EDGAR, and ODIAC (Ahn et al., 2023)

Global South cities tend to use more outdated/lower quality emission factors (Ahn et al., 2023)

Same instrument as OCO-2: Footprint ~3km? & Precision < 1 ppm

Launched in May 2019, installed on ISS

Pointing Mirror Assembly (PMA): multi-swath scans of 80 x 80 km?

version 11r (B11072Ar) used in this study

Can we use the unique vantage point of OCO-3 SAM XCO, observations to provide policy-relevant information for global C40 cities?
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OCO-3/TROPOMI Cross-Sectional Flux Method
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d We developed a computationally efficient, low latency Cross-Sectional Flux
(CSF) approach for OCO-3 XCO, and TROPOMI NO, observations.

d Urban CO, plume shapes are constrained using co-located TROPMI NO,
and HYSPLIT trajectories.

d To ensure the quality of Gaussian fits for CO, plumes, we apply a
goodness-of-fit test based on twelve mutually inclusive goodness-of-fit
metrics

. As a result of this filtering process, 2,381 Gaussian curves pass the
goodness-of-fit test, representing 7% of all Gaussian curves fitted to XCO,
measurements.

Ahn et al. (In review)
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Satellite-based CO, Emissions for Global C40 Cities
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Ahn et al. (In review)

Number of OCO-3 SAMs

Annual CO, emissions for 54 cities
were estimated using OCO-3 SAMs
collected during Sep. 2019 ~ Nov. 2023.

Estimated emissions range from 11
MtCO, for Rotterdam (pop: 2M) to 83
MtCO, for Tokyo (pop: 22M).

The 10 uncertainty range from 15% for
Madrid (# SAMs: 22) to 181% for San
Francisco (# SAMs: 2), with a median
uncertainty of 31% for Washington DC
(# SAMs: 6).

On average, 9 SAMs are used to
estimate annual CO, emissions.
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CO; Emissions, ODIAC [MtCO;]
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Ahn et al. (In review)

Globally, EDGAR and ODIAC agrees
with satellite-based emission
estimates within 7%.

Such agreement results from the
cancellation of large errors in opposite
directions at the individual city level.

Among the 54 cities, EDGAR
estimates fall within the 10 range of
our OCO-3 estimates for 25 cities,
and ODIAC estimates fall within this
10 range for 22 cities.

While individual city estimates should
be interpreted with caution, there is
less uncertainty when emissions are
aggregated regionally or globally.
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o Regional comparison of Bottom-up and Satellite-based Emission Estimates
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Ahn et al. (In review)
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Satellite-based Kaya Identity Analysis of Global Cities’ CO, Emissions
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We applied a modified Kaya Identity to decompose our satellite-
based emission estimates for the 54 C40 cities: CO, = CO,/GDP x
GDP/Population x Population

High-income cities tend to have less carbon-intensive economies:
North American cities emit 0.1 £ 0.04 kg CO, per USD of economic
output , while African cities emit 0.5 + 0.14 kg CO, per USD

A similar inverse relationship —the decoupling of CO, emissions
from economic growth— is observed when cities are grouped into
global regions.

Per capita emissions decrease with increasing population size, from
7.7 tCO,/person for cities under 5M residents to 1.8 tCO,/person for
cities over 20M residents.

Ahn et al. (In review)
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GPC GHG Emission Inventories [MICO,#|

Ahn et al. (2023)

Satellite-based emission estimates cover
emissions within a city’ geographical domain
(Scope 1).

The GPC emissions inventory—the standard
emission tracking method for C40 Cities— also
covers emissions occurring outside of the city’s
geographical domain (Scope 2+3, also called
BASIC reporting).

According to GPC inventory, Latin American cities
have the highest Scope 1 CO, percentage (78%),
followed by North America (72%), Europe (62%),
South & West Asia (52%), Africa (48%), East,
Southeast Asia & Oceania (32%), with a global
mean of 61%.
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Ahn et al. (2023)

Policy Implications of Satellite-based CO, Emission Estimates

. The data quality of emission factors (EFs) used in GPC
inventories vary regionally: the highest quality for European
and North American and the lowest for African and Latin
American cities.

- Satellite-based dataset can provide an independent check for
C40 cities, especially for Africa, Latin America, and S. & W. Asia

. A major challenge for the GCoM (Global Covenant of
Mayors) is assisting cities with limited resources or capacity
to build their own emissions inventory.

- Satellite-based emission dataset can offer an initial estimate to
support these cities



Summary

We developed a computationally-efficient CSF approach for estimating CO, emissions for 54 cities using OCO-3 SAMs data.
The CSF approach detect urban plume pixels using TROPOMI NO, and HYSPLIT trajectory, without relying on prior
emission inventories.

By comparing our satellite-based emissions estimates with two of the most widely used bottom-up datasets —EDGAR and
ODIAC— we found that bottom-up datasets tend to overestimate CO, emissions for cities in Central East Asia and South and
West Asia, while underestimating for cities in Africa, East and Southeast Asia & Oceania, Europe, and North America.

The application of the Kaya ldentity reveals the decoupling of economic growth and carbon-intensive sectors across global
cities. Also, the satellite analysis captured that per capita CO, emissions tend to decrease as a city’s population size grows.



Ongoing and Next Steps

* Expanding city coverage: increasing from 54 to 175 cities
* Integration with air quality data: linking CO, emissions with NOy and PM2.5
* Temporal analysis: Tracking emission changes over time

* Operationalization: Enabling near-real-time updates on an open-access platform
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