

Methane**SAT**

Quantifying agricultural emissions using MethaneSAT, MethaneAIR and ground-based data

Sara Mikaloff-Fletcher(1), Beata Bukosa(1), Alex Geddes(1), Penny Smale (1), David Pollard (1), Harrison O'Sullivan-Moffat (1), Kirstin Gerrand (1), Richard Law(2), Maryann Sargent(3), Joshua Benmergui(4), Zhan Zang (3), Jonathan E. Franklin(3), Steven Hamburg(4), Stephen C. Wofsy(3)

1. NIWA, New Zealand; 2. Manaaki Whenua Landcare Research, New Zealand; 3. Harvard University, MA, USA; 4. MethaneSAT LLC/Environmental Defence Fund, USA

Methane**SAT**™

Overview

- Project overview
- What can we see in intensive agricultural systems in the US?
- What can we see in dispersed agricultural systems in New Zealand?

- MethaneSAT: Joint America-New Zealand space mission, funded primarily by charitable donations through Environmental Defense Fund
- Core Mission: CH₄ fossil emission reduction,
 Science Team: Harvard University and SAO (Smithsonian Astrophysical Observatory)
- Aotearoa-New Zealand's role: Remote sensing of agricultural methane emissions and identification of global agricultural targets

New Zealand as a natural laboratory

- CH₄ emissions are dominated by a single source.
- World class CH₄ measurement capability
- High resolution atmospheric modelling capability
- High quality inventory data

Intensive emissions in the US

Penny Smale

Alex Geddes

Ag MethaneAIR data by the numbers

Example data: Diamond Feeders

Plume (kg/hr) Estimated*: 355

above plume: 846

Measured range: 171-1020

Per animal (g/hr)

EPA estimate for beef: 18

Above plume*: 42

^{*}Based on the maximum capacity of registered and permitted feedlots from Colorado State

MethaneAIR flux estimates across Colorado

Dispersed emissions in New Zealand

Canterbury Plains field campaign

Dave Pollard

Harrison O'Sullivan-Moffat

EM27 Measurements

Modelling framework

Transport model

NAME III Lagrangian dispersion model 200x200 km, 0.01 x 0.035 deg (lon x lat) ~13 levels, up to 5 km

Prior fluxes

Agricultural CH₄ fluxes MPI, Manaaki Whenua - Landcare Research

Modelled XCH₄

Agricultural enhancements

~1x1km ~10x10km ~20x20km Level 4 Bayesian CORE Divergence **Synthesis** Inversion Integral Inversion Point sources/emissions Area (total) emissions

Level 2

*Driven by meteorology from NZCSM (1.5 km) (Local configuration of the UK Met Office Unified Model)

OSSE* framework example *Observing System Simulation Experiment

Dispersed emissions in New Zealand

Beata Bukosa

Prior fluxes

Modelled XCH₄ enhancements (NAME III)

MethaneSAT XCH₄ 2025-03-01 01:52 UTC

Summary

- MethaneAIR data suggests that agricultural emissions from intensive agriculture in the United States may be underestimated
- The first MethaneSAT data over New Zealand is in good qualitative agreement field campaign data and modelling.
- Next steps: level 4 estimates from MethaneSAT data, quantitative comparison to measurements

Acknowledgements

- MBIE and NIWA for funding
- MethaneSAT team
- UK Met Office and NIWA weather and Lagrangian modelling teams
- New Zealand eScience Infrastructure (NeSI)

Sara.Mikaloff-Fletcher@niwa.co.nz

MethaneAIR

- Airborne sister instrument to MethaneSAT
- 10x10m, 4.5km swath
- Opportunistic measurements of agriculture
- Over 50 agricultural targets analysed across 13 different flights
- Divergence integral estimates, comparisons with independent estimates, and consistency assessment

