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MethaneSAT Methodology Overview

Methane Concentrations in Parts Per Billion (xCHs)
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Permian Basin, 09/11/2024. Plot by Ritesh Gautam

* Retrieval:
= CO, proxy method

* Discrete sources:
= |Large enough to produce a visible plume
= Detection & Quantification

* Dispersed sources:

= All other sources that produce XCH,
enhancements

" |[nverse modeling



Detection of Discrete Sources

Divergence Integral (DlI)

Calculate flux divergence and Denoise image using a 2D discrete
produce a flux map wavelet transform

* Plume masks are generated by thresholding and filtering

* Plume source is determined as the farthest upwind end of the plume
* Winddirection is either inferred from the plume shape or based on meteorological data



Divergence Integral Method

Apply Gauss’s theorem to calculate integral of flux divergence over tiled
grids across the scene (oversampled)

Produce a flux map with hot spots at plume origins

Absolute value of gridded flux map used for plume finding

Plume masks generated using thresholding of both the flux map and XCH,
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Wavelet Method

* Image denoising

* Plume mask generation and filtering

Apply wavelet transform to generate approximation and detail coefficients
Set approximations to zero, followed by inverse wavelet transform
The resulting “reconstructed image” retains only high frequencies
Subtract reconstructed image from input image

Thresholding to pixel value, plume shape, wind direction
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Quantification of Discrete Sources

* Determine the source as the farthest upwind end of the plume
 Draw a series of rectangles (“growing boxes”) surrounding the source
 Aggregate the concentration enhancements along each rectangle to calculate DI
* Finalflux rate is the average of valid fluxes derived from the growing boxes
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Chulakadabba et al., Methane point source quantification using MethaneAlR: a new airborne imaging spectrometer, Atmospheric Measurement Techniques, 16 (23), 5771-5785.

MAIR Estimates

York Slope 0.95 [0.81, 1.08]
OLS Slope 1.05[0.92,,1.18]
Paired t-test p-value 0,082
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Performance validated in
controlled release tests on
MethaneAlR data

El Abbadi, S. H., et al., Technological maturity of aircraft-based methane sensing for greenhouse gas mitigation, EnvironmentalScience & Technology, 58 (22), 9591-9600.



MethaneSAT Plume Results So Far

MethaneSAT can capture not only large point sources, but also potentially small
point sources under good observing conditions

172 plumes in 75 collections with the flux
magnitude range of 0.5-100 t/hr

= Target processing priority affects flux
distribution
=  Future routine processing will greatly
increase plume counts
Probability of detecting low-volume plumes
needs further quantitative evaluation

Controlled release studies are underway to
validate the accuracy and assess the
detection limit of our methods

Combining two detection methods
maximizes detection capabilities
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MethaneSAT Plume Results So Far Check out our i3

data portal!
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Unique Challenges

e )

MethaneSAT’s high sensitivity enables
observations of diffused emissions,
whose lower enhancements make it
harder to attribute them to certain
source infrastructure.
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MethaneSAT’s large spatial coverage
provides traces of long plume tails,
increasing the probability of dissected
or overlapped plume masks.
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Cloud screening corrupts plume
shape, increasing the difficulty of
source localization and quantification.
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Discrete Point Sources Emissions

d Otherimprovements:

* Machine learning plume segmentation
* Matched filter retrieval

d Other ongoing efforts:

 Ground experiments validation
* Datacross-checking with other platforms
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MethaneSAT - this machine fi'ght-s climate change .

Zhan Zhang
Harvard University
zhanzhang@g.harvard.edu
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