

Can we obtain consistent emissions using three CH4 TROPOMI products?

A comparison of atmospheric inversions at the regional and global scale

Adrien Martinez¹, Aurélien Sicsik-Paré¹, Nicole Montenegro¹, Alvin Opler¹, Eldho Elias¹, Marielle Saunois¹, Audrey Fortems-Cheiney², Isabelle Pison¹, Grégoire Broquet¹, Elise Potier² and Antoine Berchet¹

¹Laboratoire des Sciences du Climat et de l'Environnement, France ²Science Partners, France

Bridging scales of CH4 inversions with TROPOMI

TROPOMI...

On-board Sentinel 5-P

Daily coverage

Relatively high spatial resolution: $5.5 \times 7 \text{km}^2$

- → High potential for global and regional atmospheric inversions
- → Purpose: build robust top-down emission budgets at national level

Number of TROPOMI observations per 1°×1° pixel, in 2019

Can we obtain **consistent estimates** from the 3 TROPOMI products? At **global** and **regional** scale?

Data: introducing the TROPOMI XCH4 products

Official (SRON), v2.04

Lorente et al., 2022, 2023

- Operational Copernicus product
- Reprocessed (RPRO) version

BLENDED (Harvard), v1.0

Balasus et al., 2023

- Blended TROPOMI and GOSAT product
- ML post-processing of SRON

WFMD (IUP-UB), v1.8

Schneising et al., 2023

- Research product
- Retrieved with the WFMD-DOAS algorithm
- Higher coverage

SRON-corr (this study)

 Linear correction of the aerosol-dependent bias of SRON

GOSAT v9.0

Parker et al., 2020

- Proxy retrieval product
- Widely used at global scale

Data: comparing the TROPOMI XCH4 products

Coverage (quality filtering)

Product	SRON	BLENDED	WFMD	GOSAT
Global	1.4×10 ⁸	1.4×10 ⁸	1.8×10 ⁸	5.5×10 ⁵
Europe	4.7×10 ⁶	4.7×10 ⁶	7.6×10 ⁶	1.2×10 ⁴

Number of observations in 2019

Aerosols (Size & AOT) Obs error WFMD (ppb) Across-track pixel ID SWIR Albedo Obs error SRON (ppb) Surface roughness (m) Fluorescence 0 1 2 3 4 5 6 Absolute SHAP Value [ppb]

Predictors (SHAP values) of the **SRON - WFMD** XCH4 difference, following the method of Balasus et al. (2023)

XCH4 distributions

Spatial average of XCH4 in 2019

Method: the CIF, a modular platform for inversions

Method: assimilating TROPOMI satellite data in the CIF

• **Comparison** of the CH4 emissions from **inversions**

	Global	Europe
SRON	✓	✓
BLENDED	✓	√
WFMD	✓	√
SRON_corr	✓	
Evaluation	GOSAT	Surface

- **Drivers of the differences** of emission estimates
- Regional case-studies: South America, Southeast Asia

Comparing global CH4 emissions from inversions

Comparing CH4 emissions from inversions

- Spatial distributions, country budgets **differ**. SRON and BLENDED are rather consistent.
- Comparison with independent surface-based inversion: no product better than the others!

Average and standard deviation of the emissions for the SRON, BLENDED and WFMD inversions.

Product	EU27+3 (Tg/yr)	
Prior	25.2	
SRON	25.7	
BLENDED	25.0	
WFMD	16.9	
Surface	23.0	

European emission budget in 2019

Drivers of the differences of increments

Aerosols:

- **Simple approach** (linear correction) that highlights the impact of aerosols
- SRON_corr increments are more consistent with GOSAT, slightly with WFMD

Spatial average of the increments, in 2019.

OSSE:

- Observing System Simulation Experiments performed at the **global** (*Montenegro, Opler et al., in prep.*) and the **regional** (*Sicsik-Paré et al., submitted*) scale
- Highlighted the role of **observation density, error definition, albedo, boundary conditions optimization** (regional)...

What is the motivation of our regional inversions?

Number of TROPOMI observations per 1°×1° pixel, in 2019

- Global emissions have already been studied with GOSAT
- European emissions with surface stations.

- Differences between the TROPOMI products (quality filtering, XCH4, albedo, aerosols...).
 - \rightarrow New versions try to **correct** the known biases.
- They drive differences in the estimated CH4 emissions.
- No product is clearly superior than the others: we recommend to use the complementarity of the 3 products.

Poster N°5.19, Session 5

Capability of observing systems to estimate CH4 fluxes at regional and sectoral scales through OSSEs

Nicole Montenegro

What is the motivation for these regional domains?

Focus on regional domains with high emissions and low number of surface stations, where
 TROPOMI is a game-changer: South America, India and Southeast Asia.

Regional anthropogenic emissions for the 2010–2019 decade from bottom-up estimates (in Tg CH4 yr⁻¹). Source: Global Methane Budget (Saunois et al., 2025).

Emissions from tropical regions

- **South America** (0.2° × 0.2°)
 - Large contributions of wetlands and livestock
 - Comparison of the TROPOMI simulated XCH4
 distribution and the observations: impact of the
 inversion configuration (inputs, parameters) and
 sectoral contributions

- India and Southeast Asia (0.35° × 0.35°)
 - Large emissions from agriculture (eg: enteric fermentation, rice cultivation), fossil fuels, wetlands
 - Estimation of CH4 budgets using regional inversions

Map of maximum sectoral sensitivity for TROPOMI XCH4

Conclusion

- TROPOMI provides high coverage XCH4 data, valuable for global/regional inversions.
- The assimilation of the different TROPOMI products leads to different CH4 emission estimates: no product is clearly better than the others.
- We recommend to use the complementarity of the TROPOMI products for future inversions.

THANK YOU FOR YOUR ATTENTION

Contact us!

Adrien Martinez (<u>adrien.martinez@lsce.ipsl.fr</u>)
Nicole Montenegro (<u>nicole.montenegro@lsce.ipsl.fr</u>)
Aurélien Sicsik-Paré (<u>aurelien.sicsik-pare@lsce.ipsl.fr</u>)
Antoine Berchet (<u>antoine.berchet@lsce.ipsl.fr</u>)
Marielle Saunois (<u>marielle.saunois@lsce.ipsl.fr</u>)

