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A region with a highly uncertain C budget... and an

uncertain future

RECCAP-2 Permafrost

Ramage et al. [2024], Treat et al. [2024],

Hugelius et al. [2024],
Virkkala et al. [2025]

abhishek.chatterjee@jpl.nasa.gov

Total }M |__58_ el N 202 33
budget Bo“om,up 4 | 39 2 | 0.7 :;loa‘:"kge 103 stock 2.7

change

Bottom-up budget components: Anthrop-
ogenic
CO,: -270 230 120 -72 2.9 73
CHy -1.1 9.4 1.8 28 2.1 3.8
N,O: 0.14 0.002 0.12 0.18 0.23 NA

Inland waters  Fires Coastal 15 C
{ '}forest and tundra Wetlands Tundra  erosion 16 N

Boreal fan-and b o
forest e =
; iver 78 C
[Units TgC/ N yr ] CoogicTi e x| 10N

* Weak annual CO, sink and stable source of CH, and N,O during
the period 2000-2020
 Bottom-up and top-down methods estimates on the sign, but

cannot reconcile the huge difference in magnitudes
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Shoulder season carbon fluxes in the Arctic-Boreal
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These fluxes are significant, dynamic & underestimated!

NGEE-Arctic Barrow
(US-NGB) eddy flux site

Dengel et al. [2021]

8/18/2025
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spring thaw and fall
senescence CO, and CH,
pulses play an important
role in the seasonal cycle
and annual budget

we have observed these
strong pulses from in situ
networks, including
airborne campaigns but
these obs. are sparse

models struggle to capture
processes underlying
these shoulder season
fluxes



Our current gen. CO,, CH, satellites are limited by the
need for sunlit conditions

v GOSAT - since

2009

v 0OCO-2 - since
2014

v TROPOMI -
since 2018

v robust constraint
on the growing
season

Zero constraints
between
December —
February
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Good news though is that our retrieval algorithms continue to
mature and improve
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Good news though is that our retrieval algorithms continue to

mature and improve

0CO-2 vs. TCCON Land Nadir/Glint (2014-2025)
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What we lack is “enough” good-quality soundings during

shoulder seasons
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How do we extract more soundings during shoulder seasons?

I.e., avoid screening out measurements recorded over snow-covered scenes
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Implementing a neural network-based filtering technique
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Do these “additional” obs. impact CO, flux estimates?

pan-Arctic, 2015-2022 differences in non-growing season fluxes

TM5-4DVAR Setup

=& Unconstrained
&= In-aity conutrained
~&- Operational LNLG conatrained
NN LNLG constrained

Ensemble of prior -200
flux estimates o PSRce LS |
Jan 2015 Jan 2016 Jan 2017

2015-2022 (8-yrrun) . | %
D -
e :
Global 3°x2° witha = 0 [ %
Nested 1°x1°bw & ., 1§ &
50°-75° latitude e i §
2 -100 4
. g i
Weekly estimates £ ;5|
?:’3
n

Jan 2022 Dec 2022

Jan 2018 Jan 2021

Total 9 experiments
differences in magnitude of growing
season uptake
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Do these “additional” obs. impact CO, flux estimates?

Southern Hudson Bay, Spring Thaw 2017

Estimates using the NN-filtered soundings
show a different trajectory in April-May
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Do these “addit

Siberia, Jan. —Apr. 2020 Heatwave
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Do our flux estimates really improve?
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More robust validation analysis is underway, including searching for other

independent datasets, evaluation against model and EC-upscaled flux estimates



Additional efforts & activities to improve CO,, CH,
retrievals in the ABR

+ Augmenting high-latitude validation network (CHARS TCCON site, Cambridge
Bay, Northwest Territories; cal-val supersite at the FMI Arctic Space Center in
Sodankyla — see poster #4.15)

- Development of a new retrieval algorithm for processing soundings collected

over snow & ice surfaces — international collaboration across various teams
(NASA/CSU — OCO2, FMI/ESA — CO2M, ECCC/CSA — )

» Length of the satellite data record is growing (GOSAT — 15+ years, OCO-2 —
10+ years, TROPOMI — 5+ years) v invaluable for understanding how the
ABR fluxes [growing season, shoulder season] are evolving

abhishek.chatterjee@jpl.nasa.gov 15 JPL



Summary

The ABR is changing rapidly, changes are happening now and will continue

» Space-based vantage point provides an opportunity to track these changes & improve
understanding of the complex interactions that underlie C cycle dynamics in this region
« Satellite observations of CO, and CH, have already demonstrated that they can —
o track C cycle response to extreme events (e.g., heatwaves and abrupt thaw)

o provide insights into large-scale processes not well captured by process-based models (e.g., soil
respiration during fall)

o Improve monitoring over remote regions of the Arctic (e.g., permafrost peatlands, the Arctic
Ocean)

« Continued investments in improving the CO,, CH, retrievals benefits both the quality and
the quantity of observations [spatial coverage and Feb. — Nov. seasonal coverage]
across the ABR

abhishek.chatterjee@jpl.nasa.gov 16 JPL



... and right now, these satellite observations are more
Important than ever!

* The loss of access to Russian territory,
seas, and air space has significantly
impacted the pan-Arctic science enterprise

* Itis unclear when this geopolitical issue will
be resolved

- Satellite observations help overcome these
physical access constraints

Schuur et al. [2024]

Regions of environmental space described by the Arctic carbon monitoring

abhishek.chatterjee@jpl.nasa.gov network that are affected by loss of Russian science collaborations.



QUESTIONS?
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