

Progress in Understanding Natural Carbon Fluxes with Decade-long OCO-2/3 Observations

Junjie Liu, Vivienne Payne and Abhishek Chatterjee, and OCO-2/3
Project and Science Team

The 21th IWGGMS meeting June 11th, 2025

Large Ranges in Spatial Scales and Magnitudes among Major Sources and Sinks of CO₂

Major Carbon Processes and its Temporal Scales

• Longer record of OCO-2/3 enables the community to better understand carbon cycle processes spanning a wide range of temporal scales

OCO-2/3 Fill Observational Gaps of Surface Observation Network

Number of Good Quality 10-sec OCO-2 obs

OCO-2 + OCO-3

Global OCO-2 Observation Coverage Enables Low-Latency Monthly Latitudinal CO₂ Growth Rate Calculation

Pandey et al. (2024). The plot uses JPL OCO-2 (all) XCO₂ data. Colorscale is centered (white) at the mean growth rate.

The monthly latitudinal growth rate reveals the impact of several extreme climate events on CO2 growth.

Latitudinal Net Biosphere Exchange Anomalies

OCO-2 V11 MIP

 Top-down inversions attribute the observed CO2 changes to underlying surface fluxes, showing how natural carbon cycle responds to climate anomalies.

Spatial Distributions of Net Biosphere Exchange

- Large carbon sink over northeast NA, Europe, Asia, Congo Basin, and southern hemisphere mid latitudes;
- Source over N-Africa, northeast Brazil, western US.

Process Understanding of Tropical Carbon Cycle

Wang et al., 2023

- Revealed regional difference in the response to 2015-2016 El Nino over tropical South America
- The much stronger sensitivity of respiration to precipitation during late dry season drives the IAV of NBE over northern grassland in Africa.

Yun et al., 2025, minor revision

OCO-2 Data Allows Low Latency Carbon Budget Calculation

2023 flux anomalies inferred from OCO-2 based topdown inversion

- Retrospective OCO-2 is available in about a month.
- The preprint on 2023 carbon budget based on OCO-2 XCO2 was published in June 2024, and the final publication in Oct 2024.

Contributions to Global Carbon Project Annual Carbon Budget Report

2014-2023

- The annual carbon budget report by GCP is widely used by scientific community and policy makers.
- Five out of 14 models assimilated OCO-2 observations in the most recent GCP atmospheric inversions
- The OCO-2 based inversion results will be included in the main figure this year, as the OCO-2 record reaches 10-year milestone.

OCO-3 SIF and ECOSTRESS ET Enables Quantification of Diurnal Changes of Photosynthesis, ET, and WUE

Local Observing Time

OCO-3 Footprint: Jan – Feb, 2020

ECOSTRESS Footprint: July 2018 – Sept. 2020

- Wet season: no significant difference between morning and afternoon photosynthesis. ET increase
- Dry season: SIF and ET decrease in the afternoon.

Afternoon-Morning

Crop Yield Prediction

- OCO-2 SIF-based crop yield prediction reproduces both spatial gradient and temporal variability.
- Accurate low-latency crop yield prediction is critical to help forecast disruptions in food supply.

 Kira et al., 2024

Improve Process Representations and Predictions with OCO-2 Inferred Fluxes

Uptake

Paul A. Levine¹, A. Anthony Bloom¹, Kevin W. Bowman¹, John T. Reager¹, John R. Worden¹, Junjie Liu¹, Nicholas C. Parazoo¹, Victoria Meyer¹, Alexandra G. Konings² and Marcos Longo^{1,3} ⁶⁸

Respiration Response to CO2 Fertilization Shifts Regional Distribution of the Carbon Sink

Gregory R. Quetin^{1,2} ⁵, Caroline A. Famiglietti¹, Nathan C. Dadap^{1 5}, A. Anthony Bloom^{3 5} Kevin W. Bowman^{3,4} , Noah S. Diffenbaugh^{1,5} , Juniie Liu^{3,6} , Anna T. Trugman² , and Alexandra G. Konings^{1,5} @

Concluding Remarks

- The scientific value of OCO-2/3 data is increasing with a longer record:
 - Global OCO-2 observational coverage allows low-latency monthly latitudinal CO₂ growth rate calculation.
 - New insights on the spatial and temporal variability of natural carbon sinks.
 - Increasing use in GCB and low latency estimates of the response of natural carbon cycle to climate anomalies.
 - SIF-related applications: low-latency SIF-based crop-yield predictions, drought monitoring, recovery from fires.
 - Constraining biogeochemical models.

It Takes More Than a Village...

The Flux Anomalies over the Tropics and Extratropical Land

- Extra-tropics shows weaker carbon sink in recent years.
- Requires longer record to detect trends

Recovery from Wildfire over Boreal Region and Crop Yield Prediction

The annual cycle of OCO-2 SIF and albedo as a function of post-fire stand age in western boreal North America.

 SIF increases considerably in 2-59 year post fire stand classes in mid-summer, with greater enhancements in the 20-40 year stands.

Kim et al., 2024; Kira et al., 2024

Monthly Air-Sea Net Carbon Flux Anomalies

About an order of magnitude smaller than land carbon flux IAV