Nitrous Oxide (N₂O) Surface Fluxes Derived from IASI Space-Borne Observations

Ricaud Philippe

CNRM, Météo-France

Attié Jean-Luc

LAERO, Univ. Toulouse

Pison Isabelle, Martinez Adrien

LSCE, CEA

Our project

- N₂O emissions mainly come from natural sources (55-61%) and the rest from human activities (agricultural and industrial sectors)
- N₂O emissions through a "top-down" approach relies on sparse surface observations to estimate monthly sources of N₂O on a global scale
- N₂O emissions and sources are highly uncertain over land and ocean
- Our project aims to use N₂O observations from space to estimate N₂O sources on a global scale.
- We started with GOSAT observations (Kangah et al., JGR, 2017), continued with IASI observations (Chalinel et al., 2022) and the use of GOSAT-2 observations is ongoing
- This project brings together French and international scientists also involved in defining a MIN₂OS satellite mission (Ricaud et al., 2021) submitted to ESA EE12 in 2023 but not selected.
- We use the Community Inversion Framework (CIF) model, developed at LSCE, to invert N₂O surface fluxes

N₂O Source Distribution

Methodology: TN₂OR (Toulouse N₂O Retrieval) V2.01

Validation: airborne, NDACC, TCCON

Tropical Maxima: Sources & African convergence zone High Latitude Minima: Weak Sources & Stratospheric Impact

Validation with airborne HIPPO & NASA observations

Methodology: Community Inversion Framework (CIF)

Validation: impossible for surface flux → surface mixing ratio

Validation: Surface Stations

Forecast mean bias: -10 ppbv Assimilated mean bias: ~0.0 ppbv Bias reduction with assimilation

Assimilation of IASI TN₂OR N₂O at 300 hPa improves N₂O at the surface

Validation: Surface stations & CAMS

CAMS assimilates Surface N₂O mixing ratio (Thompson, CAMS Report, 2020)

CIF-assimilated N₂O consistent with obs.

Surface Flux in July 2011

Surface Flux AmF/F: Monthly Variation in 2011

Monthly Emissions in 2011

Global Surface Flux & AmF/F in 2011

Global Surface Flux by Regions in 2011

Synthesis

- We made the first global-scale estimation of N₂O emissions for 2011 using IASI observations at 300 hPa and the CIF model.
 - 4DVAR & LMDz model
- We validated the CIF N₂O surface mixing ratio against surface observations
 - Agreement with the surface observations
 - Consistent with CAMS assimilated fields in 2011 (surface)
- Surface fluxes estimated from our study
 - Greater than prior information and literature over Africa and South America
 - Less than prior information and literature over South East Asia

Visit Adrien Martinez's poster for more information on the CIF model!

