

Introduction

- 1. Ensures accurate retrieval of trace gases (CH₄ and CO₂)
- 2. Enables long-term monitoring of instrument performance
- 3. Builds on the calibration work of MethaneAIR (airborne precursor with near-identical specs)
- 4. Integrates flight system TVAC calibration with on-orbit LED lamp data

Flight System TVAC Calibrations

- Dark Collects
- Read Noise
- Dark Current
- Random Telegraph Signal
- Thermal Background Sensitivity
- Bad Pixel Mapping
- Photon Transfer
- Photo Response Non-Uniformity and Quantum Efficiency at Multiple Wavelengths with Repeatability
- Linearity with Reciprocity
- Residual Image (Persistence)

Straylight testing

Dark Collects

Radiometric Calibration

MethaneSAT L1 flowchart

Noise calculation

To determine the uncertainty of the observed radiance populating the covariance matrix of observations.

Dark current processing

- •We used the pre flight dark files to derive the baseline bad pixel mask.
- •Daily dark collection: 4 dark files (20 frames/each) per day.
- Use on-orbit dark to update the bad pixel mask regularly
- Supports L1A dark current generation

Hot Pixels

Mean DN > 3000 and STD < 1

- Cold Pixels/Dead Pixels STD < 1
- High Variability Pixels

Excessively variable signal, 5x typical sensor STD

O₂ sensor: STD > 19.45 DN CH₄ sensor: STD > 22.11 DN

Residual Image correction

- The residual image affects only the first frame (~0.75%) after illumination and has no impact on the second frame.
- Corrected using 2nd-order polynomial fit vs. frame brightness

Gain and Non-linearity Correction

Gain Correction:

- •Converts L1A from DN → electrons
- •Based on slope of variance vs. mean signal
- •We utilize on-orbit LED Lamp Sweep data to monitor and track sensor gain stability.

Non-linearity Correction:

- •Sensor measurements may deviate from a linear response.
- •Nonlinearity correction ensures detector output matches expected physical values.
- •Lookup tables are used to adjust the raw readings.

Radiometric correction and TVAC radiometric characterization

- Sensors illuminated with NIST-traceable light source
- 5 light levels used across dynamic range (pre-thermal cycles)
- 17 overlapping collects merged due to MethaneSAT's large FOV
- Collects combined per sensor per light level for full-FOV coverage

Radiometric correction and TVAC radiometric characterization

- Radiometric calibration is applied to convert L1A (e⁻/s) → Radiance (W⋅sr⁻¹⋅m⁻²⋅µm⁻¹) for each pixel.
- We can multiply the coefficients to get the radiance.

Stray-light correction

Led by David Miller

Median values across spectral science window

Sensor: CH₄ Target ID: 38

Collection ID: 01540260 Collection date: 20240912

- Stray-light correction performed using iterative deconvolution with peak kernel following by reflective spatial ghost kernel based on Tol et al. (2018)
- Correction redistributes stray-light signals over water back onto higher signal pixels over land/clouds
- Coastline signal gradient exhibits smaller decreases over water where spatial ghost reflection appears

Please refer to David Miller's poster: 4.16. Pre-launch and on-orbit spectral calibration of MethaneSAT

Lunar Correction

Led by Maya Nasr

MethaneSAT Lunar scanning pattern currently consists of 5 scans of 20 seconds each, to image the Moon nominally once per lunar month at the same phase angle (5-9°) and same Moon phase.

Ellipse fitting to produce corrected Moon before calculating the full disc integrated radiance.

We use Lunar Irradiance Model of the European Space Agency (LIME) for comparison.

Reminder: Moon is 1/40th of FoV

Telemetry Orthorectification

- Estimate spacecraft forward direction using telemetry (pitch/roll/yaw) → define instrument center vector
- Derive per-pixel boresight vectors using optical lens model
- Intersect each vector with Earth surface to get geolocation

Telemetry Orthorectification

- Estimate spacecraft forward direction using telemetry (pitch/roll/yaw) → define instrument center vector
- Derive per-pixel boresight vectors using optical lens model
- Intersect each vector with Earth surface to get geolocation

GeoAkaze-Image-Based Geolocation Correction

- Compare L1b geolocation to high-accuracy Sentinel-2 cloud-free MSI reference
- Use RANSAC algorithm to match features and reject outliers
- Correction accuracy depends on image resolution and feature scale

MSAT image

Sentinel 2 MSI

GeoAkaze-Image-Based Geolocation Correction

- Compare L1b geolocation to high-accuracy Sentinel-2 cloud-free MSI reference
- Use RANSAC algorithm to match features and reject outliers
- Correction accuracy depends on image resolution and feature scale

MSAT image

Sentinel 2 MSI

GeoAkaze-Image-Based Geolocation Correction

- Compare L1b geolocation to high-accuracy Sentinel-2 cloud-free MSI reference
- Use RANSAC algorithm to match features and reject outliers
- Correction accuracy depends on image resolution and feature scale

MSAT image

Sentinel 2 MSI

Telemetry Orthorectification - Improve Camera Model

- Apply boresight/forward vector adjustments to refine image alignment in spacecraft coordinates
- Tuned Instantaneous Field of View, boresight, IMU frame time offset
- GeoAKAZE-derived camera model improves baseline L1B accuracy

Without Correction

With Correction

Without Correction

With Correction

Performance - Geolocation

Performance-QAQC

Generates a JSON report of L1B geolocation and radiometric quality metrics

•Geolocation Validation:

- Computes solar and instrument angles
- Checks invalid (NaN/Inf) latitude, longitude, and radiance

•Radiance QA Checks:

- Flags abnormal values (low signal, saturation, out-of-range radiance)
- Evaluates bad pixels (dead, hot, cold, over/underexposed, high STD)
- Calculates bad pixel ratios and identifies bad frames

•Pass/Fail Criteria:

 QA fails if >75% bad pixels, missing geolocation, or >30% bad frames

•Output:

 Summary statistics, AKAZE success, altitude, zenith/azimuth, signal quality, and error reasons saved to JSON

Performance-Dark DN

- •CH₄ and O₂ sensors show stable dark DN values
- •DN levels correlate with FPA temperatures
- Low DN observed afterSafe Mode operations

Performance - On-orbit LED Lamp Sweep

Records the detector response across a range of integration times

Uses of On-Orbit LED Lamp Sweep:

- 1.Linearity Characterization
- 2. Gain Stability Monitoring
- 3. Flat-Field and Pixel Response Characterization
- 4. Saturation Limit and Full-Well Capacity Estimation

Linearity Analysis for All Quads (On-orbit and TVAC)
Measured Signal vs Integration Time

On-orbit vs TVAC non-linearity

Quadrant Residuals: Adjusted Values vs Input DN Index