Comparison of the TIR spectral radiance between GHG satellite-based multi-sensors (GOSAT, GOSAT-2, AIRS, IASI, and CrIS) and aircraft-based S-HIS **Atsushi Yasuda**¹, Joe K. Taylor², Robert O. Knuteson², Akihiko Kuze³, Hiroshi Suto³, Kei Shiomi³, Fumie Kataoka¹ 1: Remote Sensing Technology Center of Japan (RESTEC) 2: University of Wisconsin 3: Japan Aerospace Exploration Agency (JAXA) IWGGMS-21 (Takamatsu, Kagawa, Japan), June 10, 2025 ### Introduction #### **Background of this study** - For GOSAT/GOSAT-2, the combination of SWIR and TIR radiance spectra provides a partial column density of GHG between lower and upper troposphere. It is necessary for obtaining accurate partial column density to perform a TIR spectral validation. - Comparison between satellite-based sensors and high-quality reference data from aircraft provide an accurate spectral validation. #### Comparison with Scanning High-Resolution Interferometer Sounder (S-HIS) | Instrument pointing | Cross-track scanning | |--|---| | Swath width | 40 km (at 20 km altitude) | | Horizontal resolution | 2 km (at 20 km altitude) | | Wavelengths | 3.3 - 18 µm | | Maximum optical path depth (Spectral resolution) | ±1.037 cm (0.48 cm ⁻¹) | | Radiometric uncertainty | < 0.2 K (3σ) for all bands for
scene brightness temperatures
greater than 220 K (Joseph K.
Taylor et al. 2023) | - S-HIS data is high-quality reference TIR data due to frequently maintenance and calibration. - Comparison of S-HIS with satellite-sensor in the literature - AIRS: Tobin et al. (2006) - GOSAT/FTS: Kataoka et al. (2014) ### Introduction ### Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WHyMSIE) 2024 of S-HIS flights - 10 flights of S-HIS WHyMSIE 2024 (2024/10~2024/11) - ➤ Lamont (north-central Oklahoma) observation - Atmospheric profiling (radiosonde) and surface radiation measurements collected by the Atmospheric Radiation Measurement (ARM) facility are available. - Satellite-based sensors including GOSAT-2/ FTS-2 observe. - Railroad Valley (vicarious calibration site for GOSAT and GOSAT-2), ocean etc. Many coincidences between satellite-based sensors and S-HIS ### **Objective of this study** For the TIR spectral validation, we demonstrate the comparison between GHG satellite-based TIR sensors including GOSAT-2/FTS-2 and S-HIS WHyMSIE 2024 spectral data. ### Method ### TIR double difference method (Tobin et al. 2006; Kataoka et al. 2014) - This method enables to evaluate the bias of satellite-sensor toward S-HIS with reducing the effect of difference in observation geometry and errors of calculation parameters. - This method is independent of sensor type including interferometer and diffraction grating. - Spectral resolution was matched to the common spectral resolution by the convolution of instrument line shape function of each sensor. #### Input parameters for land coincidence | Parameter | Source | | |--|---|--| | Land surface
temperature
(LST) | MODIS/Aqua Land Surface Temperature/3-Band
Emissivity Daily L3 Global 1 km SIN Grid Day | | | Emissivity | Combined ASTER and MODIS Emissivity database over Land (CAMEL) Emissivity Monthly Global 0.05Deg | | | Temperature
and relative
humidity
profile | Radiosonde from the Atmospheric Radiation
Measurement (ARM) Facility LBLRTM U.S. standard model | | | O ₃ profile | ERA5 reanalysis (> 1 hPa) LBLRTM U.S. standard model (< 1 hPa) | | | CO ₂ profile | CarbonTracker CO₂ 2022 North America (> 1 hPa) LBLRTM U.S. standard model (< 1 hPa) | | | CH ₄ profile | CarbonTracker CH₄ 2023 (> 1 hPa) LBLRTM U.S. standard model (< 1 hPa) | | | Other trace
gas profile | I BLR I M I I S. standard model | | | | 1.3/9 | | # Coincidences between satellite-based sensors and S-HIS WHyMSIE 2024 ### **Coincidence conditions** - 1. The observation points of S-HIS WHyMSIE 2024 are distributed within the footprint of FTS, FTS-2, AIRS, CrIS, or IASI, and within ±30 minutes of the observation time difference with FTS, FTS-2, AIRS, CrIS, or IASI. - 2. The altitude of S-HIS WHyMSIE 2024 flight is higher than 19 km. - → Most altitudes of S-HIS WHyMSIE 2024 flight are around 20 km. #### Coincidences with S-HIS WHyMSIE 2024 | Date | Sensors matched with S-HIS | Coincidence area | | |------------|----------------------------|------------------|--| | 2024/10/22 | FTS-2, AIRS | near Lamont | | | 2024/10/31 | CrIS, AIRS | near Lamont | | | 2024/11/04 | FTS, AIRS | Railroad valley | | | 2024/11/07 | CrIS, AIRS | Ocean | | | 2024/11/12 | CrIS, IASI | Ocean | | | 2024/11/13 | CrIS, AIRS | Ocean | | 4/9 S-HIS footprint # Coincidences between FTS-2 – S-HIS and AIRS – S-HIS (Lamont, 10/22/2024) FTS-2 viewAT/CT: -0.89 / 0.21 [deg] FTS-2 time: 19:50:55 S-HIS time: 19:54:46 ~ 19:55:19 FTS-2 viewAT/CT: -2.76 / 0.33 [deg] FTS-2 time: 19:50:59 S-HIS time: 19:53:51 ~ 19:54:34 FTS-2 viewAT/CT: -4.78 / 0.22 [deg] FTS-2 time: 19:51:04 S-HIS time: 19:53:07 ~ 19:53:50 Color: MODIS LST (MYD21A1D) ### **Results: Double Difference** ### Results: Spectral Mean and Standard Deviation of Double Difference Spectral mean of mean double difference for all coincidences CO_2 cold channel (670 ~ 700 cm⁻¹) CO_2 warm channel (700 ~ 750 cm⁻¹) CH₄ channel (1250 ~ 1350 cm⁻¹) ### Discussion: Comparison of TIR inter-comparison ### TIR double difference with S-HIS WHyMSIE 2024 | | Spectral mean ± standard deviation of mean double difference for all coincidences [K] | | | |---------------|---|---|--| | | CO ₂ cold channel
(670 ~ 700 cm ⁻¹) | CO ₂ warm channel
(700 ~ 750 cm ⁻¹) | CH ₄ channel
(1250 ~ 1350 cm ⁻¹) | | FTS-2 – S-HIS | 0.67 ± 0.34 | 0.05 ± 0.31 | -0.05 ± 0.40 | | AIRS – S-HIS | 0.59 ± 0.60 | 0.10 ± 0.55 | 0.04 ± 0.61 | ### FTS-2 – AIRS TIR inter-comparison in 2024 from match up viewer (difference in brightness temperature) https://www.eorc.jaxa.jp/GOSAT/Matchup_forCal/top_matchup_viewer.html | FTS-2 – AIRS
difference in brightness
temperature | Mean±STD [K] (1) 2024/01~2024/12 (2) S-HIS flight month (2024/10 ~ 2024/11) | |---|---| | CO ₂ cold channel | (1) 0.22 ± 0.21 | | 682 ~ 692 cm ⁻¹ | (2) 0.26 ± 0.22 | | CO ₂ warm channel | (1) 0.30 ± 0.45 | | 700 ~ 702 cm ⁻¹ | (2) 0.31 ± 0.34 | | CH ₄ channel | $(1) -0.30 \pm 1.13$ | | 1304 ~ 1306 cm ⁻¹ | $(2) -0.38 \pm 0.77$ | ### Conclusion - For GOSAT/GOSAT-2, the combination of SWIR and TIR radiance spectra provides a partial column density of GHG between lower and upper troposphere. It is necessary for obtaining accurate partial column density to perform a TIR spectral validation. - For the TIR spectral validation, we demonstrated the comparison between GHG satellite-based TIR sensors including GOSAT-2/FTS-2 and WHyMSIE 2024 data of S-HIS, which is high-quality reference airborne data due to frequently maintenance and calibration, with TIR double difference method. - Based on the double difference near Lamont on October 22, 2024, biases of FTS-2 and AIRS toward S-HIS are similar. - CO₂ cold & warm channel: positive bias (< 1 K) / CH₄ channel: ~ 0 K - → Similar result with TIR inter-comparison between FTS-2 and AIRS. This implies that similar bias between FTS-2 and AIRS with that estimated from S-HIS double difference can be obtained in other month without S-HIS flights.