

First quantification of atmospheric carbon dioxide from the Geostationary Operational Environmental Satellite (GOES East)

Aarón Sonabend-W Vishal Batchu Carl Elkin Christopher Van Arsdale John Platt Anna M Michalak

A Complementary Tool for Carbon Monitoring: Fusing Geostationary Data with ML

The Opportunity: Leveraging Existing Assets for Deeper Carbon Cycle Insights

- Dedicated Missions Provide Precision:
 - O Missions like OCO-2, OCO-3, GOSAT, GOSAT-2 and upcoming platforms (e.g., GOSAT-GW, CO2M, MicroCarb) provide high-precision gold standard CO2 measurements.
 - O Low earth orbit leads to infrequent revisits
- GOES High Temporal and Spatial Coverage:
 - O GOES provides continuous, full-disk coverage of the Americas every 10-15 minutes at a 2 km resolution.
 - O This represents a vast, underutilized dataset spanning multiple years, containing information about the atmosphere and surface at scales.

Why is This Valuable?

- Clouds:
 - O Cloud cover is a major obstacle for all passive remote sensing missions.
 - GOES's frequent revisits increase opportunities for getting clear-sky observations, allowing us to fill in critical data gaps.
- Capturing the Diurnal Cycle:
 - O Biospheric fluxes and anthropogenic emissions have strong diurnal cycles.
 - O GOES can provide **observations throughout the day**, offering a new window into these crucial patterns.
- Monitoring Transport and Local Enhancements:
 - Improve our understanding of source-sink dynamics by complementing high-precision measurements from OCO-2/3, GOSAT, GOSAT-2 with continuous spatial/temporal context.

Proprietary + Confidential

XCO₂ measurements are sparse in space and time

OCO-2 measurements May, 24 2021, NASA

- OCO-2, OCO-3, GOSAT, GOSAT-2 are the gold standard in XCO2 measurement
- Sparse observations yield high uncertainty
- Complementary measurements might help bring uncertainty down

GOES East

- Geostationary
- Used for weather forecasting
- 16 bands (low spectral res.)
- High coverage
- High frequency (10 mins)

GOES + surface reflectance + weather + machine learning can help extract knowledge from existing observations that traditional retrieval algorithms might find challenging

GOES East Bands Inform XCO₂ concentration

Some GOES bands are in the spectrum where there's sensitivity to CO_2 in the mid and lower troposphere

Why is CO2 Hard to See with GOES?

Low Spectral Resolution

1. Seeing CO2: Sharp vs. Blurry View

OCO-2/3 were designed for XCO2 estimation: High-definition camera

- Sharp Vision: Uses 1024 narrow spectral channels (high resolution).
- Result: Clearly sees CO2's unique fingerprint.

GOES ABI (meant for Weather): 90s disposable camera

- Broad Vision: Uses few wide spectral bands (low resolution).
- **Result:** CO2's subtle signal is blurred with other signals.

Why is CO2 Hard to See with GOES?

Biased observations

2. What Else GOES Sees: The biases obscuring CO2 signature

- a) Surface reflectance
- b) Aerosols
- c) Subpixel clouds
- d) Temperature, humidity
- e) CO2

GOES wasn't built for CO2 tracking. Its broad view mixes the faint CO2 signal with much *louder* environmental noise.

Google Research

t+9

Averaging GOES Predictions over space and/or time helps beat down the noise

Number of XCO2 Estimates

Why is CO2 Hard to See with GOES?

Low Spectral Resolution

Number of GOES scans used

(mdd)

error

Estimated XCO2

More GOES input data yields better single XCO2 estimates: Model Leverages Context to Reduce Uncertainty

The Law of Large Numbers drives down the noise for both the model and the XCO2 predictions

Simulated data

Why is CO2 Hard to See with GOES?

Biased observations

2. What Else GOES Sees: The biases obscuring CO2 signature

GOES was MW White FBA & Wzetaek it git to long and with warms the faint CO2 Migha swifter for the form of long and water and the control of t

Google Earth Engine Modis Image

Surface reflectance and weather features help the model disentangle the CO2 signal

GOES East <-> OCO-2 & OCO-3 collocation

Adapted from Penn State, Meteorology and Atmospheric Science

- OCO-2,3 and GOES East have similar (~2km) footprint
- Collocated pixels within a 10 minute, ~2km window, nadir-mode
- Viewing angle cosine similarity < 70°
- GOES East sub-satellite point distance thresholding

Monthly GOES East <-> OCO-2 collocated 2023 footprints

Collocation yields ~10M OCO-2,3 soundings "pixels" from 2017-2021

Training & Testing the Model

Ch. 5 (Snow/Ice band): 1.6 µm

Ch. 16 (CO₂ band): 13.3 µm

t-9, ..., t-1

Atmospheric state along viewing angle

Neural Network Model

Labels: XCO₂ nadir-mode soundings

Train set: 10M soundings OCO-2,3 from 2019, 2020, 2022, 2023

Test set: OCO-2,3 + TCCON observations from 2021

Decreasing Bias & Noise with GOES Scans & Features

Decreasing Bias & Noise with GOES Scans & Features

Decreasing Noise by Aggregating Predictions in Space/Time

GOES-level pred. aggregation

Model performance on TCCON & held-out OCO-2/3 observations

There is XCO_2 signal in the GOES Bands: GOES predictions are within ~1.5 ppm from TCCON and OCO-2&3

Seasonal patterns in TCCON on 2021

Latitudinal Gradient: OCO-2 vs GOES East model

Preliminary results: XCO2 throughout 2021

Weekly daytime 0.5 degree XCO2 average from GOES East perspective

Geographic Fine Scale Features

Can GOES see emissions from large power plants?

Preliminar results: High CO₂ emitting U.S. power plants

Figures show mean afternoon summer 2021 concentrations.

GOES sees some power plants better than others

Surface reflectance is still confounding

Next steps & acknowledgements

- Radiative transfer simulations for validation
- Comparison of GOES scans vs OCO-3 SAMs
- Extend to CNN and Swin transformer architectures
 - O Capture spatial correlation
 - Provide additional GOES observations to the model

Data Sources

- OCO-2: V11.1
- OCO-3: V11r
- TCCON: GGG2020 retrieval
- MODIS: MOD09A1.061 Terra Surface Reflectance 8-Day Global 500m
- Weather: ECMWF ARCO ERA5

